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ABSTRACT

This study presents a method to achieve a concise
description of multidimensional loading histories for fatigue
analysis using the stochastic process theory. For purposes of
this study, the load history is considered to have stationary
random and non-stationary mean and variance content. The
stationary variations are represented by a vector
Autoregressive Moving Average (ARMA) model while
Fourier series are used to model the non-stationary variations.

Justification for this method is provided by
comparing the dynamic characteristics of the original loading
and reconstruction through their power spectral densities.
Further justification is obtained by comparing histograms of
principal strain and the corresponding orientation for original
loading and reconstruction. Final justification is provided
using the resulting fatigue lives of original and simulated
loading. To this end, a multi-axial fatigue damage model,
valid for approximately proportional loading, is employed and
two fatigue failure modes are considered:failure due to normal
strain and failure due to shear strain. The shortest predicted
life is reported.

A concise description of complex loadings is
achieved due to the relatively small number of Fourier
coefficients needed and the use of ARMA models. The overall
frequency content, correlations, and sequential information of
the load history are statistically preserved.

INTRODUCTION

Analytical studies alone cannot provide sufficient
information for a fatigue safe design for complex structures
because the phenomenon of fatigue failure is still not fully
understood. Two methods used for design verification are
fatigue testing and simulation studies.

Fatigue testing exposes a structure to the dynamic
loads that are anticipated during real operating conditions and
records the life to failure. For more effective (and better
controlled) testing, it has become customary to perform many
fatigue tests in a laboratory rather than in the actual operating

environment. As the testing equipment has become more
advanced, these laboratory fatigue tests now provide a reliable
and efficient way to produce repetitions of complex loadings.

Simulation studies, such as Monte Carlo simulations,
are computer-based calculations of the fatigue life according
to a structure model and the fatigue phenomenon, including
uncertainties with respect to structural and/or loading
parameters.

Fatigue loading histories are often lengthy and of
random nature; therefore, for both fatigue testing and
simulation studies, an efficient description of the loading
environment is necessary.  Moreover, in many cases multi-
axial loading conditions exist, and loading in all directions
need to be modeled jointly.  The methods for modeling
irregular fatigue loadings can be divided into two
groups:counting methods and correlation theory based
methods (Bílý and Bukoveczky, 1976).

While the counting methods Rainflow Matrix
(Matsuishi and Endo, 1968; Dowling, 1972; Perret, 1987; ten
Have, 1989) and To-From matrix (Haibach et al., 1976) have
been successfully applied to uniaxial loading, no commonly
accepted approach has been found to describe multi-axial
loadings.  This is because closed hysteresis loops cannot be
identified for multi-axial loadings.  Therefore, correlation
theory based methods are employed where the model becomes
a substitute for the data and leads to a concise description with
few parameters.

A correlation theory based method proposed by Yang
(1972) represents the data by its power spectral density (i.e.,
the frequency domain description of the autocorrelation of the
original data).  The Markov method, as described by ��������
al. (1988), falls into this category, as do a more general class
of time series called Autoregressive Moving Average
(ARMA) models.

Three publications by the authors of this study
discuss the use of ARMA models for stationary (Dowling et
al., 1992) and non-stationary (Thangjitham et al., 1994 and
Leser et al., 1994) one-dimensional fatigue loading histories.
Traditionally, ARMA models have been used in the areas of
earthquake (Kozin, 1988), wind (Li and Kareem, 1990) and



ocean (Spanos, 1983) engineering to model random load
histories.  An article reviewing ARMA models for Monte
Carlo studies is credited to Spanos and Mignolet (1989).

Random processes can be analyzed either in the time
or the frequency domain. Furthermore, random processes can
be classified into two categories, stationary and non-
stationary. Non-stationary processes have certain
characteristics, such as mean or variance, that change over
time. The modeling of non-stationarity is important because
many real loadings are of non-stationary nature. Time domain
analysis techniques are employed because of their efficiency
in simulating loadings.

In this study, the modeled history was generated by a
ground vehicle traveling on a rough road. This history consists
of slowly varying non-stationarities with (respect to mean and
variance) and a rapidly varying process-the stationary random
variation.  To account for such non-stationary variations in an
accurate but concise manner, Fourier series are employed
because of  their versatility when describing loadings and the
capability of extending them to a stochastic process.  ARMA
models are used because of their efficiency in describing
stationary random processes, where an ARMA model can be
interpreted as a transfer function between a white noise and a
general random process.

RANDOM LOAD MODEL

The model developed to describe fatigue random load
histories is applicable to both stationary and non-stationary
cases, and non-stationarities can be modeled as being either
deterministic or stochastic.

ASSUMPTIONS – The time history is a
superposition of a zero-mean stationary random process and
the events that affect the variation of both the mean and
variance.  Mean and stationary random components provide
distinct contributions to the power spectral density (PSD) of
the combined process.  The mean variation is slowly varying
and contributes only to the low frequency range of the PSD.
The stationary random variation however, may affect the PSD
at any frequency.  The variation in variance, even though it is
also assumed to be of slowly varying nature, cannot be
detected in a PSD plot of the whole history.  It can only be
seen if the evolutionary power spectral density of the PSD, as
a function of time, is known (Priestley, 1965).

Mean and variance variations of each channel are
assumed to be independent of the variations of other channels
and also independent of stationary random variations.  The
stationary random variations however, are assumed to be
correlated among channels. For the cases studied, random
loadings represent actual strain response data at a given point
of a vehicle traveling over a rough road.  The irregular road
profile induces strain, which has a stationary random nature.
However, maneuvers such as steering or changing velocity,
induce non-stationary variations in strain with respect to mean
and variance.  The analysis of actual driving behavior
(McLean and Hoffmann, 1971) justifies the assumption that
driving maneuvers are of slow varying nature.

TIME SERIES MODEL – The following model
represents the multi-channel random fatigue loading history
with non-stationary mean and variance variation:

tttt nsmx ⋅+=

(Equation 1)

Where ( ) ( )[ ] Tn
ttt xx

 1 �=x represents the underlying history

consisting of n channels, ( ) ( )[ ] Tn
ttt mm

 1 �=m  is the non-

stationary variation in the mean value, ts  is a ( )nn×  diagonal

matrix with elements ( )i
ts  as the scaling functions accounting

for the variation in variance, and ( ) ( )[ ] Tn
ttt nn

 1 �=n  a zero-

mean stationary random process.  The following sections will
show how each of the components of Equation 1 are modeled.
For simplicity, the derivation will be shown only for the scalar

components ( )i
tm , ( )i

ts , ( )i
tn , where the vector and matrix

expressions are obtained by combining all n components.
Also for convenience, the superscript i will be dropped where
it is clear that a component of the vector or matrix is implied.
In addition, it is understood that the parameter t refers to
discrete points in time, as this study is concerned with
modeling evenly sampled time series.

Mean Description - To minimize the number of
parameters necessary to characterize the mean variation in a
deterministic manner, a truncated Fourier series is used such
that:
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(Equation 2)

Where t∆  is the length of the sample interval, ( )tN∆π=ω 20

is the fundamental frequency, mM  and N are the number of

terms in the truncated Fourier series and the total number of
sample points of the history, respectively. ka  and kb  are the

discrete Fourier coefficients calculated from tm .

Introducing random phase angles for each term in the
summation of Equation 2 allows us to extend the description
of the mean as a stochastic process (Rice, 1945).  For the case
of ( )12/ −<< NM m , tm  approximates the low frequency

content of xt  (i.e., its mean variation).  The value of mM  is

found such that the difference between the original history and
truncated Fourier series yields a process, td , which is

stationary with respect to it's mean, and is expressed as
follows:

ttttt mxnsd −=⋅=

(Equation 3)

A method for finding the parameter mM  is provided

by Buxbaum and Zaschel (1977), who analyze the dynamic
system to decide which part of the response spectrum is due to
stationary random loadings and non-stationary loadings.
Filtering in the frequency domain allows one to separate the
two components. However, this is often difficult, as informa-
tion regarding the dynamic system characteristics and the
actual input spectrum are seldom available.  Therefore, to
determine whether the series td  is indeed stationary with



respect to its mean value, the methods of nonparametric
statistics are used.  In essence, according to nonparametric
criteria, a series is deemed stationary with respect to it’s mean
if the variation in the mean is of random nature.  More detailed
descriptions of this approach can be found in the context of
general time series analysis in Bendat and Piersol (1986) and
in application to fatigue loadings in Leser (1993), and Leser et
al. (1994).

Variance Description - The remaining zero mean
component, tt ns ⋅ , must be separated into its respective

components.  To model the scaling function ts , in a

deterministic manner, a method similar to the one for the mean
description is used.  The scaling function ts  is defined as the

function that renders the quotient tt sd  stationary with

respect to variance.  This is equivalent to saying that ts  is

defined as the standard deviation of td .  In order to estimate

the standard deviation of td  a procedure as shown by Nau et

al. (1982) is employed.
For the zero mean time series td , sampled at discrete

equally spaced intervals, a simple estimate 2~
tσ  for the true

variance 2
tσ , is obtained via a moving window such as:
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Where n is the width of the window and the window weights,
and wj  are such that:
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To determine an appropriate size n of the window, inference
methods from classical statistics can be used.  Using a Chi-
Square test, a confidence interval can be constructed (Miller
and Freund, 1977). For example:
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Where 2
tσ  is the value of the true variance, 2~

tσ  is the

estimated variance, and 2
,1 α−χn  indicates the Chi-Square

distribution with ( 1−n ) degrees of freedom at confidence
level α .  For an acceptable relative maximum error of 25%,

the following must hold: 25.1~75.0 22 ≤≤ tt σσ .  Using a Chi-

Square distribution table (Miller and Freund, 1977), it can be
shown that these bounds, with a chosen value of 9.0=α ,
require a minimum number of 96=n .  Therefore, a value of

100=n  is chosen to estimate the true variance 2
tσ . The

quantity tσ~  then, gives an estimation of the standard deviation

of td  (i.e., an approximation of the scaling function ts ).

The rectangular weighting function is the simplest
(i.e., ( )11 += nwj ). However, a more gradually varying

window is generally preferred, such that neighboring points
have a stronger influence on the estimate of the variance than
points that are further away from the current observation.  Nau
et al. (1982) uses a cosine bell shaped window. For simplicity,
a triangular window is introduced in this study such that:
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(Equation 7)

Nau et al. (1982) show that the estimate of the
variance using Equation 4 tends to be biased in a systematic
way.  Peak values in variance will be underestimated, while
estimated troughs will be larger than the corresponding true
values. A correction can be introduced to account for this
known deviation and to obtain a more accurate estimate.
However, as a concise (and therefore only approximate)
description of the variance is desired, no further refinement is
performed.

The next step is to concisely represent the estimated
standard deviation tσ~ .  The fact that tσ~  is not evenly

distributed makes it difficult to postulate models that would
describe it.  Therefore, a transformation due to Box and Cox
(1964) is commonly used to enhance symmetry:
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Where BC
tσ~  indicates the Box Cox transform of tσ~ .  The

parameter λ  of this power transformation leads to a
logarithmic transformation for 0=λ  and no transformation
for 1=λ .  The parameter λ  is chosen such that the
transformed series has zero skew (i.e., it becomes
symmetrically distributed about it’s mean in order to facilitate
modeling by a harmonic function).  If more than one value of
λ  fulfills this criterion, the transformed time series
corresponding to these values of λ  are obtained and their
respective mean and variance are calculated.  The distribution
of the transformed series are compared to normal distributions
with the given values of mean and variance for each λ .  A
normalized error ε , between the frequency histogram of the
transformed series and the probability density function (pdf) of
the corresponding normal distribution is obtained according to
Ang and Tang (1975) as:
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Where I denotes the number of intervals the total range of
BC
tσ~  was divided into, ih  indicates the relative frequency of a

certain value of BC
tσ~ , and if  indicates the magnitude of the

pdf evaluated at the same value of BC
tσ~ .  The value of λ  that

leads to the minimum error, ε , is chosen as the optimal
parameter yielding the transformed series that is closest in
distribution to a normally distributed process.

In this study, the scaling function ts , is a truncated

Fourier series:
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Where, as before, t∆  is the length of the sample interval,
( )tN∆π=ω 20  is the fundamental frequency, sM  and N are

the number of terms in the truncated Fourier series and the
total number of sample points of the history, respectively, and

kc  and kd  are the discrete Fourier coefficients calculated

from BC
tσ~ .  As for the mean model, introducing random phase

angles for each term in the summation of Equation 10 allows
us to extend the description of the scaling function to a
stochastic process (Rice, 1945).  For the limiting case where

( )12 −= NM s , BC
t

BC
ts σ= ~ , while for ( )12 −< NM s , BC

ts  is

an approximation of BC
tσ~  leading to st  as a suitable scaling

function.  The value of sM  is found such that BC
ts  and BC

tσ~

have a prescribed correlation coefficient of 95.0=ρ sM
s .

Generally, sM  is much smaller than ( )12/ −N  because the

variation in variance has been calculated using an average and
is therefore of slowly varying nature.

Random Component Description - The remaining

stationary random components, ( )i
tn , can be represented by an

ARMA model of appropriate order.  A vector ARMA model is

employed to account for correlations among components, ( )i
tn ,

of tn .  Estimation of ARMA parameters from observed data

may be performed either through maximum likelihood or
moment estimators.  Both techniques yield efficient, unbiased
and consistent estimates.  However, the maximum likelihood
estimation leads to nonlinear equations with possibly more
than one relative maximum (Kay, 1988).  The nonlinearities
are so severe that the commonly used Newton-Raphson
approach will not always converge to a solution (Akaike,
1973).  Therefore, approximate procedures in linear form
based on the method of moments estimators are often used.
Two principal methods coexist using an intermediate
approximate model either of pure autoregressive or pure
moving average type.  These methods, while approximate in

nature, will converge to the statistically optimal maximum
likelihood estimates given long time series (Kay, 1988).

Using the autocorrelation function of the given data,
a large order AR model can be built, which is assumed to be a
reliable approximation of the autocorrelation.  The auto-
regressive parameters can be estimated via a system of linear
equations.  The parameters of the desired ARMA model are
obtained by minimizing the difference between the transfer
functions of the pure AR model and of the ARMA model.
The two stage least square procedure, as introduced by Theil
(1958) and applied to ARMA modeling by Durbin (1960),
provides the means for the minimization by solving a set of
linear equations.  Algorithms are described for one dimen-
sional ARMA models by Gersch and Liu (1976) and Gersch
and Yonemoto (1977), for multidimensional cases by Samaras
et al. (1985), and for modeling random fields by Mignolet and
Spanos (1992).  The procedure by Samaras et al. (1985) for
multi-dimensional ARMA models is chosen in this study for
its numerical efficiency. Gersch and Liu (1976) have
presented an analogous procedure for single channel
estimation. However, the algorithms shown are for the special
case where autoregressive and moving average part are of the
same order.  To allow for more flexible modeling, the method
was extended to the general case where both parts may be of
different order (Leser, 1993).

No commonly agreed on approach of model order
selection for vector ARMA models have been found.  For
single channel ARMA models some commonly used criteria
are Akaike’s Information Criterion, AIC, (Akaike, 1974), a test
based on the F-distribution (Pandit,1973), and the so called Q-
statistic (Box and Jenkins, 1976).  All these tests are based on
measuring the statistics of the residuals, i. e. the part of the
data not predicted by the model.  These methods were applied
to time series that contained 50 to 500 observations.  For such
short records a statistical test will lead to an ARMA model
with order p and q well below one hundred, in fact, often
below ten.  For the case where the observed sequence is much

longer, say of order 410  to 510 , however, any statistical test
will demand ARMA models of very large order.

Therefore, a new criterion for model order
determination is presented that is based on the comparison of
the observed time series and the time series obtained from a
proposed model.  The advantage of this scheme is that a more
concise model will be obtained than would be if any of the
methods based on residuals is chosen.  This is particularly true
for the case where one needs to find an ARMA model for a
large data set.

After the parameters for a number of ARMA models
are estimated, a preliminary selection is made based on the
closeness of the auto- and cross- power spectra of a vector
ARMA model to the respective spectra of the original loading.
A generally applicable measure of association between two
variables is provided through the correlation coefficient.  For
two random variable, x and y, the correlation coefficient is
defined via the covariance, ( )yx,cov , and the standard

deviations, xσ  and yσ , as:

( )
yx

xy
yx

r
σσ

= ,cov

(Equation 11)
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(Equation 12)

Where ix  and iy  are sample points, x  and y  are estimators

for the mean of the respective variables, and N is the number
of sample points.  This definition implies that 11 ≤ρ≤− xy

and for 0=ρxy  observations of x and y are uncorrelated,

while for 1=ρxy  they are identical.  In general, the nearer the

xyρ value is to unity, the closer the resemblance between the

two.
The closeness of the power spectra, ( )fSij , of the

original loading to the ones obtained from an ARMA model
are therefore measured by their respective correlation
coefficients, ( )qp

Sij

,ρ .  The model with the smallest number of

parameters at a given correlation level, e.g. ( ) 8.0, =ρ qp
Sij

,

( ) 9.0, =ρ qp
Sij

, etc., is chosen for further study.  This allows

ruling out a large number of models due to their lack of
matching the dynamic characteristics of the original record.
The final model selection is based on a comparison of fatigue
lives obtained for the original loading and a loading
reconstructed using the ARMA model corresponding to a
particular correlation level.  Unlike the rest of the time series
literature, this study ties the step of model building directly to
the application of the simulated time series.

MULTI-AXIAL FATIGUE DAMAGE MODEL

The original strain gauge rosette history was obtained
from an automotive front suspension component driven
through proving ground maneuvers.  This history was
provided by General Motors Corporation to the Society of
Automotive Engineers, Fatigue Design and Evaluation
Committee.  This set constitutes three channels, where
channels 1 and 3 measure strain in directions perpendicular to
each other and channel 2 measures strain along a direction
which is 45° from both channels 1 and 3.  The history, Figure
1, sampled at evenly spaced intervals, assumed to be one
second long, containing 12,500 points, constitutes one block.

In order to support the contention that the
reconstructed history is equivalent to the original with respect
to fatigue life, a simplified multi-axial fatigue damage model
for random amplitude loadings was employed (Juneja, 1992).
The model requires the applied multi-axial cyclic loading to be
approximately proportional.  This assumption leads to the
choice of a principal strain ratio that is treated as constant for
the entire history, which in turn allows the use of deformation
plasticity theory to relate stresses and plastic strains.  The
analysis is conducted by first obtaining the orientation of the
critical fatigue damage plane.  To assess fatigue life two failure
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Figure 1.

Time series plots for original history, (a) channel 1,
(b) channel 2, and (c) channel 3.

modes are considered.  For the first mode, a normal strain
based analysis is conducted on the chosen critical plane.
Modified versions of Morrow's and the Smith-Watson-Topper
mean-stress model are used to incorporate mean-stresses.  A
second part of the analysis checks for the possibility of shear
dominated failure on a critical shear plane.

NORMAL STRAIN BASED ANALYSIS - This
section shows the procedure for calculating fatigue life for the
case where normal strains lead to failure.

Selection of the Critical Plane - A histogram
technique is used in this analysis to choose the critical plane,
in which the principal strain values and their corresponding
orientations are computed for the entire history. The
histogram, as shown for the original loading in Figure 2, is a
plot where principal strain orientations with respect to the x-
axis of the rosette ( )21 or  θθ  appear on the X-axis, while the Y-

axis denotes the corresponding principal strain values
( )21 or  εε .  For each range of X-Y combinations the number of

occurrences are given.  This histogram technique was used by
Bonnen et al. (1991) to analyze strain rosette data for selecting
a critical plane for fatigue life analysis.

Since the counts in the histogram relate to the number
of data points in the history for which a particular combination
of principal strain values and their orientation occur, the
distribution of these counts for a particular principal strain
angle indicate the cycling of the strain events for that
orientation.  For approximately proportional loading, there is
not much rotation of principal axes and most of the activity is
restricted to one or two directions only.  The orientation for
which the largest spread of principal strain values is covered,
with the most non-zero values in different bins, is chosen to be
the critical direction.  As observed in Figure 2, most of the
cycling of strain events, with significant amplitude, occurs in
the region between -45° and -63° (for which the mean is -54°)
with respect to the x-axis of the rosette.  The crack is expected
to initiate and grow under the influence of the strain in this
direction, with the strain perpendicular to it having a
secondary effect.  The strain history is transformed along and
perpendicular to this plane, and these are taken to be the new



principal directions, and also the critical direction for fatigue
cracking.

ε              θ -81 -63 -45 -27 -9 9 27 45 63 81
0.00135 0 0 89 0 0 0 0 0 0 0
0.00121 0 0 115 0 0 0 0 0 0 0
0.00107 0 1 490 0 0 0 0 0 0 0
0.00920 0 17 578 0 0 0 0 0 0 0
0.00780 0 135 755 0 0 0 0 0 0 0
0.00640 0 217 1275 0 0 0 0 0 0 0
0.00500 0 1143 757 6 0 0 0 0 0 0
0.00360 0 1140 731 150 1356 0 0 0 0 0
0.00210 0 679 650 60 627 673 7 0 0 0
0.00070 0 346 102 42 62 282 33 14 0 0

-0.00070 49 2 0 0 0 0 3660 5528 258 78
-0.00210 200 3 0 0 0 0 0 0 0 1883
-0.00360 573 6 0 0 0 0 0 0 0 84
-0.00500 133 11 0 0 0 0 0 0 0 0
-0.00640 0 0 0 0 0 0 0 0 0 0
-0.00780 0 0 0 0 0 0 0 0 0 0
-0.00920 0 0 0 0 0 0 0 0 0 0
-0.01070 0 0 0 0 0 0 0 0 0 0
-0.01210 0 0 0 0 0 0 0 0 0 0
-0.01350 0 0 0 0 0 0 0 0 0 0

Figure 2.

In plane principal strains, 1ε  or 2ε , versus orientation,

1θ  or 2θ , for the original history.

Choice of the Most Damaging Strain Ratio - The
principal strain history along the selected critical orientation is
analyzed.  The in-plane principal strain history perpendicular
to this direction is assumed to be always proportional to the
history along this direction.  Hence, the principal strain ratio
that corresponds to the maximum damage needs to be chosen.

Two histograms are computed in order to assist in
choosing the principal strain ratio.  In one histogram, the ratio
of the original principal strains, 21 εε , which is obtained from

the given strain gage rosette data, is plotted against the
corresponding orientations, 1θ  and 2θ .  For each ratio, one

count corresponding to each principal strain direction is
placed.  The distribution of the values of the ratio of principal
strains for the critical orientation is observed and the most
frequently occurring value of the ratio is noted.  This
histogram for the original loading is shown in Figure 3.  You
can observe that most of the principal strain ratio values for
the orientation range of -45° to -63° (mean -54°) lie at -0.05.
Another plot with finer resolution was generated (not shown)
and it was observed that most of the strain ratio values lie at
−0.08.  It is not necessary that the ratio contributing the
maximum damage be the same as the noted value from the
histogram, since the high count for this value might
correspond to large number of small strain amplitude events
which do not result in significant damage.

Hence, rainflow cycle counting is performed for the
history in order to isolate all the strain amplitude events.  A
histogram with the ratio of principal strains for each event
plotted against the strain range for that event now enables one
to look for the ratio that corresponds to the most damaging
strain events, where the range is twice the amplitude.

r -81 -63 -45 -27 -9 9 27 45 63 81
0.95 0 0 0 0 0 0 0 0 0 0
0.85 0 0 0 0 0 0 0 0 0 0
0.75 0 0 0 0 0 0 0 0 0 0
0.65 0 0 0 0 0 0 0 0 0 0
0.55 0 0 0 0 0 0 0 0 0 0
0.45 0 0 0 0 0 0 0 0 0 0
0.35 0 0 0 0 0 0 0 0 0 0
0.25 0 0 0 0 0 0 0 0 0 0
0.15 0 0 0 0 0 0 0 0 0 0
0.05 0 18 14 0 0 0 0 0 0 0

-0.05 0 3630 4945 18 0 0 0 0 0 0
-0.15 0 30 583 179 0 0 0 0 0 0
-0.25 19 17 0 39 3 0 0 0 0 0
-0.35 243 5 0 17 5 0 0 0 0 0
-0.45 236 0 0 5 28 0 0 0 0 0
-0.55 161 0 0 0 233 0 0 0 0 0
-0.65 145 0 0 0 732 0 0 0 0 0
-0.75 129 0 0 0 580 0 0 0 0 3
-0.85 19 0 0 0 217 0 0 0 0 93
-0.95 3 0 0 0 66 0 0 0 0 85

θ

Figure 3.

Principal strain ratio, r,
 versus orientation, θ , for  the original history.

r       a* 0.10 0.31 0.52 0.72 0.93 1.14 1.35 1.55 1.76 1.97
0.57 0 0 0 0 0 0 0 0 0 0
0.51 1 0 0 0 0 0 0 0 0 0
0.45 2 0 0 0 0 0 0 0 0 0
0.39 1 0 0 0 0 0 0 0 0 0
0.33 1 0 0 0 0 0 0 0 0 0
0.27 1 0 0 0 0 0 0 0 0 0
0.21 1 0 0 0 0 0 0 0 0 0
0.15 5 0 0 0 0 0 0 0 0 0
0.09 28 0 0 0 0 0 0 0 0 0
0.03 100 0 0 0 0 0 0 0 0 0

-0.03 517 1 0 0 1 0 0 0 0 0
-0.09 1104 15 7 2 3 2 0 0 0 2
-0.15 98 0 1 0 0 0 1 0 0 0
-0.21 30 0 0 0 0 0 0 0 0 0
-0.27 8 0 0 0 0 0 0 0 0 0
-0.33 5 0 0 0 0 0 0 0 0 0
-0.39 5 0 0 0 0 0 0 0 0 0
-0.45 3 0 0 0 0 0 0 0 0 0
-0.51 2 0 0 0 0 0 0 0 0 0
-0.57 4 0 0 0 0 0 0 0 0 0

* = 10-3 Figure 4.

Strain ratio, r, versus strain amplitude, a,
of the rainflow cycles for the original history.

Figure 4 shows such a histogram for the original loading.  It
can be seen that most of the strain events (including the major
ones) correspond to the strain ratio of -0.09 (which is nearly
the same as obtained from the detailed analysis of Figure 3).

State of Stress Effect Modification of Cyclic
Stress-Strain Curve - Once the principal strain ratio is
selected, the uniaxial cyclic stress-strain curve is modified for
the corresponding biaxial state of plane stress.  The uniaxial
cyclic stress-strain curve for the material is assumed to have
the Ramberg-Osgood form
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 σ+σ=ε

(Equation 13)

The elastic strains are related to stresses using the
generalized Hooke’s law, while deformation plasticity theory
is used to relate plastic strains and stresses.  Since ε a  and σ a

are related as shown in Equation 13, we have:
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 σ+σ=ε

(Equation 14)

where aε  and aσ  are effective stress and strain based on

octahedral shear stress and strain.
The effective Poisson’s ratio, ν , is obtained from a

chosen point on the effective stress-strain curve of Equation
14 as:






 σν+ε

ε
=ν

E
a

pa
a

5.0
1

(Equation 15)

Where ν  is the elastic Poisson’s ratio, and the subscript p
refers to plastic strain.  This value of ν , and the selected
principal strain amplitude ratio value (see the section on
Choice of the Most Damaging Strain Ratio), allow the
calculation of  the principal stress amplitude ratio for the
chosen point on the effective stress-strain curve.  Details
follow.

For plane stress conditions, the strain amplitude in
the principal direction 1 is obtained by adding elastic and
plastic parts using deformation plasticity theory, which gives:

( )aa
t

a E 211
1 σν−σ=ε

(Equation 16)

Where the subscript 1 indicates the principal direction and

aatE εσ=  is the secant modulus on the effective stress-

strain curve.  Similarly, for principal direction 2:

( )aa
t

a E 122
1 σν−σ=ε

(Equation 17)

From equations 16 and 17 we get the principal stress
amplitude ratio, λ :

( )
( )aa

aa

a

a

12

12

1

2

1 εεν+
εε+ν=

σ
σ=λ

(Equation 18)

Stress and strain amplitudes in the principal direction
1 are the found using the following equations:

2
1

1 λ+λ−

σ=σ a
a

(Equation 19)

aa ε
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λν−=ε
2

1
1

1

(Equation 20)

Equations 16 through 20 are adapted from Hoffmann
et al. (1985a, 1985b).

Constants, defining the new curve, are fit to the a1σ
and a1ε  values obtained for the various points.  The new curve

is assumed to also have the Ramberg-Osgood form:
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(Equation 21)

Where, nE , nH , and nn  are new fitting constants.

The new Young’s modulus, nE , is fitted using the elastic case,

for which νν =  and Eaa =εσ .  Hence, we get:
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1 E
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a
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(Equation 22)

Stress-Strain Modeling:  Hysteresis Loop Curves
Rainflow cycle counting is performed on the strain history
along the critical plane, revealing that the transformed record
of the original loading contains 1965 major peaks and valleys.
This is done in order to isolate each cycle in the history and to
obtain the strain amplitude for that cycle.

To perform rainflow cycle counting, the order of the
history is arranged so that the largest peak is first in the
history.  The history is first filtered to obtain peaks and valleys
only, omitting all intermediate points.  A peak-valley-peak or
valley-peak-valley is considered to be a cycle if the second
strain range is greater than the first.  Each time a cycle is
counted, the appropriate peaks are removed from the history
and the corresponding cycle is recorded.  The complete set of
rules for performing rainflow cycle counting is described in
ASTM (1996).

The stress for the first peak, which is the largest peak
in the history, is determined using the monotonic stress-strain
curve.  For unloading following the largest peak, and for
further cyclic loading, it is suggested by the rheological
models that yielding should occur if the strain range exceeds
twice the yield strain from the monotonic stress-strain curve.
Hence, for these situations, the hysteresis loop path is
predicted by the curve obtained by a factor of two expansion
of the monotonic stress-strain curve:
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(Equation 24)

For Equation 24, σ∆  and ε∆  are measured from an
origin which is the point where the loading directions change.
Hence, this origin shifts its position continually to the next
recent point of direction change.  In addition, the stress-strain
behavior exhibits a memory effect after completion of a loop,
i.e., it returns to the path previously established.  (This fairly
standard stress-strain modeling procedure is described in
Chapter 12 of Dowling (1993) and elsewhere.)

Modulus of Elasticity, E 202000 MPa 29297 ksi

Yield Strength, Yσ 380 MPa 55.1 ksi

Ultimate Strength, Uσ 6321 MPa 90.3 ksi

Fatigue Strength Coefficient, fσ′ 948 MPa 138 ksi

Cyclic Strength Coefficient, H ′ 1258 MPa 182 ksi

Cyclic Strain Hardening
Exponent, n′ 0.208

Fatigue Strength Exponent, b -0.092

Fatigue Ductility Coefficient, fε′ 0.260

Fatigue Ductility Exponent, c -0.445

Table 1.

Material properties for SAE 1045 steel, Kurath et al. (1989).

Life Calculations - All fatigue life calculations are
based on the material properties of SAE 1045 steel, stated in
Table 1.  Two mean stress models, that of Morrow, and that of
Smith, Watson, and Topper, modified for the multiaxial
loading, are used to incorporate mean-stresses into the life
calculations.

For the Morrow model, the effective strain amplitude
is chosen to be the damage parameter used to relate the
multiaxial strain history to the uniaxial life equation; hence,
the life is postulated to depend on the effective strain
amplitude.  The life equation for the biaxial state of stress
( )aaa 123  ,0 λσ=σ=σ , with the effective strain amplitude as

the damage parameter, is obtained by adding the elastic and
plastic parts of strain using deformation plasticity theory:

( ) ( ) c
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a NN

E
 

2

 

2
1 2

1

5.01
2

1

1

λ+λ−

λ−ε′+
λ+λ−

νλ−σ′
=ε

(Equation 25)

Where the uniaxial strain life curve generated from
tensile testing is used to derive Equation 25 and the constants
are b (elastic) stress life exponent and c plastic strain life
exponent.

The modified version of the Morrow mean stress
model leads to:

( ) b
fmf eff

NN 1 1 σ′σ−=

(Equation 26)

In which fN  is the mean modified number of cycles

to failure 321 mmmm σ+σ+σ=σ  and

( ) 211 λ+λ−νλ−σ′=σ′ ff eff
. Where 1mσ , 2mσ , and 3mσ  are

the mean stresses in the principal directions 1, 2, and 3
respectively.  Equations 25 and 26 are adapted from Chapter
14 Dowling (1993).

The Smith-Watson-Topper model for mean stresses
is used with the principal strain history along the critical
orientation, which is considered to be related to life.  In
particular, the principal strain amplitude is coupled with the
maximum stress on the critical plane to incorporate mean
stress effects.  The equation describing this model is:

( ) ( ) b
f

fcb
fff N

E
N 2 

2
 1

max 22
2

σ′
+ε′σ′=ε∆σ +

(Equation 27)

Where the right hand side is based on the uniaxial
strain life curve generated from completely reversed
controlled strain testing.

A linear damage rule, known as the Palmgren-Miner
rule (Palmgren (1945), Miner (1945)) is used with either
Equation 26 or 27 to find the life in terms of blocks
(repetitions of history) to failure.  To employ the Palmgren-
Miner rule, the number of cycles, in , applied at strain

amplitude iε  is divided by the cycles to failure, fi NN = ,

corresponding to iε , to obtain the life fraction, ii Nn .

Failure is reached when the sum of life fractions for the
various strain cycles equals unity.

∑ =
i i

i

N

n
1

(Equation 28)

MAXIMUM SHEAR STRAIN BASED ANALYSIS -
This analysis is conducted in order to check for shear strain
dominated damage on the critical plane.  The most damaging
maximum shear strain on the critical plane is chosen by
considering both the in-plane and the out-of-plane shear
strains.

The maximum shear strain amplitude coupled with
the tensile stress perpendicular to the plane of maximum shear
strain is considered to be the damage parameter in the strain
life equation.  The model, which also incorporates mean-stress



effects, is described by the following equation:
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Where maxγ  is the maximum shear strain amplitude, nσ  is the

maximum tensile stress perpendicular to the maximum shear
strain plane during the cycle, yσ  is the yield strength, G is the

shear modulus, 
fγ′  is the shear fatigue ductility coefficient,

fτ′  is the shear fatigue strength coefficient. This model was

proposed by Socie (1987).  He considers the minimum of the
life obtained by this model and by the Smith-Watson-Topper
model (Equation 27) to be the controlling value of life, where
the former predicts tensile mode cracking and the latter, shear
mode cracking.  The right hand side of Equation 29 is the
description of the strain-life curve generated from torsion
testing, the constants for which can be estimated from tensile
material constants using the expression given by Socie (1987),
i.e., ff ε′=γ′ 66.1 , EG ff σ′=τ′ 44.1  and ( )ν+= 12EG .

The life is obtained in terms of blocks to failure (repetitions of
the history) using cycle counting and the Palmgren-Miner rule,
as described before.

The minimum of all three life estimates, i.e. Morrow
(eqs. 25-26), Smith-Watson-Topper (eq. 27), and shear strain
(eq.29), is considered to be the final estimate. A number of
scaling factors are applied to the input strain history in order to
obtain a strain life diagram where the fatigue life, as a function
of the input strain levels, is shown.  The fatigue life is then
calculated for each scaling factor.

RESULTS AND DISCUSSION

According to the employed model of Equation 1, the
history is decomposed into its three components: the mean
component tm , the scaling function st , and the stationary

random part tn . Where it is understood that the three channels

(such as ( )1
tm , ( )2

tm , and ( )3
tm ) constitute the respective vector

tm  and will from now on be referred to as ( )i
tm .  In order to

model the variation of the mean ( )i
tm  in a deterministic way,

various Fourier series with increasing numbers of terms are
formed, giving the tentative mean descriptions.  The dif-
ference of the original records and each mean description

( ) ( ) ( ) ( )i
t

i
t

i
t

i
t snmx ⋅=−  are obtained.  These differences are then

analyzed for deviations from being a zero-mean process.  The
best (most concise) mean description is chosen as the one that

renders ( ) ( )i
t

i
t sn ⋅  stationary, with respect to its mean, using the

Fourier series with the least number of terms.
Nonparametric run tests were performed and it was

seen that for all channels (1, 2, and 3), a value of Mm = 50

renders the series ( ) ( )i
t

i
t sn ⋅  stationary (with respect to their

mean) although only approximately so for channel 3.  See Fig.

5b for the deterministic mean Model ( )1
tm  and Fig. 5c for the

mean removed record ( ) ( )11
tt sn ⋅  for one channel of the rosette

data.

In order to model the scaling functions ( )i
ts , an

estimate of the standard deviation of the time series ( )i
tσ~  is

obtained according to Equation 4 (shown in Fig. 5d).  For a
concise representation of ( )i

tσ~ , the Box-Cox transformations

are performed (where ( ) 613.01 −=λ , ( ) 318.12 −=λ , and
( ) 524.03 −=λ  are the optimal transformation parameters) and

the transformed series ( )BC
t
1~σ  is shown in Fig. 5e.  A number

of Fourier series (with an increasing number of terms) are
formed according to Equation 10, giving the tentative scaling
functions.
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Figure 5.

Time series plots for (a) original history, (b)
deterministic mean with 50=µM , (c) mean-

removed series, (d) estimated standard deviation,

tσ~ , and (e) Box-Cox transformation of tσ~ , BC
tσ~

for channel 1.

The series with the fewest number of terms that are

correlated at 95% to ( )BCi
tσ~  (denoted ( )BCi

ts ) has 40=sM

terms for channel 1, 90=sM  terms for channel 2, and

80=sM  terms for channel 3.  This series for channel 1 is

shown in Fig. 6a.  The inverse Box-Cox transformation of
( )BCi
ts  (denoted ( )i

ts ) is the scaling function used to render the

mean-removed series ( ) ( )i
t

i
t sn ⋅  stationary, with respect to



variance (one of which is shown in Fig. 6b).  The stationary

series, i.e. ( )1
tn  is shown in Fig. 6c.

The stationary series are represented by a three-
dimensional ARMA model.  Parameters for a number of
ARMA models are estimated and the correlation coefficient
between power spectra of these ARMA models and the spectra
of the stationary series are calculated; see Table 2.  Because
the auto- and cross-spectra of the stationary are relatively
simple, low order ARMA models fit these spectra well.

Therefore, models are sought where all of the spectra, ( )( )fS ij

have a minimum correlation of ( )
( )qp
S ij

,ρ  greater than 0.9, 0.95,

0.97, 0.98 to the respective spectra obtained for the stationary
series.  This leads to the choice of ARMA(2,0), ARMA(2,1),
ARMA(3,0), and ARMA(6,5).  It is noted that increasing the
model order beyond ARMA(6,5) does not increase the
correlation coefficients.  One auto- and one cross-spectral
density for ARMA(2,0) and ARMA(6,5) are shown in Figs. 7
and 8.  The area under the spectral densities is well
approximated by both models, but the higher order model fits
the peaks better.  Moreover, as both spectra are shown on a
logarithmic scale, the agreement is actually quite good as can
be seen by the very close fit in the low frequency range, where
the largest portion of the power of the process is concentrated.
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Figure 6.

Time series plots for (a) Fourier series approximation

to BC
tσ~  with 40=sM , BC

ts , (b) scaling function, ts ,

(c) stationary series, (d) ARMA(6,5) model
simulation, and (e) reconstruction for channel 1.

p
q 0 1 2 3 4 5 6 7

1 0.8613

2 0.9322 0.9622

3 0.9722 0.9722 0.9722

4 0.9622 0.9622 0.9722 0.9613

5 0.9513 0.9613 0.9613 0.9733 0.8833

6 0.9522 0.9522 0.9533 0.9422 0.8613 0.9833

7 0.9722 0.9722 0.9722 0.9733 0.8613 0.8833 0.9711

8 0.9422 0.9422 0.9422 0.9622 0.8613 0.8833 0.9822 0.9722

Table 2.

Correlation coefficient of power spectra, ),( qp
Sij

ρ , for

selected ARMA(p,q) models, where the subscript
indicates the auto- or cross-spectrum with minimal
correlation coefficient and the bold number indicates
the minimum order model for a given correlation
value.

Time series are generated for all ARMA models, as
in Fig. 6d for channel 1, are multiplied by the deterministic

scaling functions, ( )i
ts , and then are added to the deterministic

mean variations, ( )i
tm .  A complete reconstruction, using a

realization of the selected ARMA(6,5) model is shown in Fig.
6e for channel 1 and in Fig. 9 for all three channels.  It is noted
that the original time series for all three channels exhibit, in
the region of t=2500 and t=10000, a distinctly different
pattern.  It is presumed that a maneuver was executed that
included a few large amplitude short duration (spike) events.
The spectral content of this part of the series is therefore
distinctly different from the remaining series.  Consequently,
the reconstruction will perform poorly in that region.  It can be
seen in the reconstruction that for these regions a much larger
number of large amplitude cycles are predicted than were
present in the original loading.  This will affect fatigue life
predictions.

The power spectral densities, ( )( )fS ij , of the original

and reconstructed histories are shown in Figs. 10 and 11.  As
the spectra are calculated for the record as a whole, any of the
above stated variations in spectral content, as they are of short
duration, are averaged and cannot be observed.

The same histograms as shown for the original record
were obtained for the reconstructed history.  Figures 12
through 14 show that the reconstruction displays the same
kind of proportionality as the original record and that most of
the cycling activity is in one direction. Namely, the critical
angle is again observed to be approximately -54° (Fig. 12, the
mean of the range from -45° to -63°) and the most damaging
strain ratio is about -0.05 (Fig. 13).  Moreover, a rainflow
cycle count of the transformed history reveals 2136 cycles,
compared to 1965 for the original history.  All fatigue relevant
characteristics, therefore, are well reproduced by the
reconstructed history.

The strain life curves for SAE 1045 steel are
calculated according to the simplified critical plane approach



described in the section on Multiaxial Fatigue Damage Model,
and are shown in Fig. 15.  The failure mode, i.e. the minimal
fatigue life as predicted by Morrow, Smith-Watson-Topper,
and shear strain was different across the range of scaling
factors.  Reconstructions using ARMA(2,0), ARMA(2,1),
ARMA(3,0), and ARMA(6,5) models predict fatigue lives that
are very close to the others, such that strain life curves
partially overlap. Consequently, only the prediction for
ARMA(6,5) is shown. The ARMA(0,0) and ARMA(1,0)
models constitute the limiting cases on fatigue life as they fall
well below and above the life of the ARMA(6,5)
reconstruction.  Because the reconstruction introduced a
number of large cycles that are not present in the original
loading, all reconstructions tend to be biased toward shorter
lives.  In fact, the limiting case of the ARMA(1,0)
reconstruction that predicts the longest life is the one that is
closest to the life predicted for the original record.  However,
of all reconstructions with a minimum correlation for the

power spectra, ( )
( ) 9.0, ≥ρ qp
S ij , the strain life curve obtained from

the ARMA(6,5) model was closest to the one obtained from
the original loading.  The ARMA(6,5) model was, therefore,
deemed appropriate for reconstruction as both spectral shape
and fatigue life agreed reasonably well with the original.
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Power spectral density, ( )fS11 , for the stationary
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Time series plots for reconstructed history.
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Power spectral density, ( )fS11 , for the original

history and a reconstructed history.
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Power spectral density, ( )fS12 ,

for the original history and a reconstructed history.

ε            θ -81 -63 -45 -27 -9 9 27 45 63 81
0.00135 0 0 40 0 0 0 0 0 0 0
0.00121 0 1 242 0 0 0 0 0 0 0
0.00107 0 24 315 0 0 0 0 0 0 0
0.00920 0 50 547 0 0 0 0 0 0 0
0.00780 0 143 757 1 0 0 0 0 0 0
0.00640 0 286 1387 4 0 0 0 0 0 0
0.00500 0 1060 850 22 0 0 0 0 0 0
0.00360 0 1145 664 121 1428 0 0 0 0 0
0.00210 0 573 635 43 621 615 0 0 0 0
0.00070 0 299 171 62 67 290 60 26 1 0
-0.00070 59 1 0 0 0 0 3558 5581 252 93
-0.00210 164 13 0 0 0 0 0 1 0 1940
-0.00360 515 22 0 0 0 0 0 0 0 83
-0.00500 146 1 0 0 0 0 0 0 0 0
-0.00640 21 0 0 0 0 0 0 0 0 0
-0.00780 0 0 0 0 0 0 0 0 0 0
-0.00920 0 0 0 0 0 0 0 0 0 0
-0.01070 0 0 0 0 0 0 0 0 0 0
-0.01210 0 0 0 0 0 0 0 0 0 0
-0.01350 0 0 0 0 0 0 0 0 0 0

Figure 12.

In plane principal strains, 1ε  or 2ε , versus orientation,

1θ  or 2θ , for the reconstructed history.

r          θ -81 -63 -45 -27 -9 9 27 45 63 81
0.00135 0 0 0 0 0 0 0 0 0 0
0.00121 0 0 0 0 0 0 0 0 0 0
0.00107 0 0 0 0 0 0 0 0 0 0
0.00920 0 0 0 0 0 0 0 0 0 0
0.00780 0 0 0 0 0 0 0 0 0 0
0.00640 0 0 0 0 0 0 0 0 0 0
0.00500 0 0 0 0 0 0 0 0 0 0
0.00360 0 0 0 0 0 0 0 0 0 0
0.00210 0 0 0 0 0 0 0 0 0 0
0.00070 0 23 26 1 0 0 0 0 0 0
-0.00070 0 3449 4830 38 0 0 0 0 0 0
-0.00210 0 115 749 107 1 0 0 0 0 0
-0.00360 25 28 3 75 7 0 0 0 0 0
-0.00500 197 3 0 22 8 0 0 0 0 0
-0.00640 277 0 0 10 29 0 0 0 0 0
-0.00780 147 0 0 0 168 0 0 0 0 0
-0.00920 141 0 0 0 807 0 0 0 0 0
-0.01070 87 0 0 0 595 0 0 0 0 1
-0.01210 18 0 0 0 197 1 0 0 0 75
-0.01350 9 0 0 0 105 3 0 0 0 123

Figure 13.

Principal strain ratio, r, versus orientation, θ ,
for the reconstructed history.



r       a* 0.10 0.31 0.52 0.72 0.93 1.14 1.35 1.55 1.76 1.97
0.57 0 0 0 0 0 0 0 0 0 0
0.51 0 0 0 0 0 0 0 0 0 0
0.45 3 0 0 0 0 0 0 0 0 0
0.39 2 0 0 0 0 0 0 0 0 0
0.33 0 0 0 0 0 0 0 0 0 0
0.27 3 0 0 0 0 0 0 0 0 0
0.21 3 0 0 0 0 0 0 0 0 0
0.15 13 0 0 0 0 0 0 0 0 0
0.09 25 0 0 0 1 0 0 0 0 0
0.03 98 0 0 0 0 0 0 0 0 0

-0.03 493 6 1 1 0 0 0 1 0 0
-0.09 1209 42 17 4 4 1 0 1 1 1
-0.15 107 0 1 1 0 1 0 0 0 0
-0.21 21 0 0 0 0 0 0 0 0 0
-0.27 11 0 0 2 0 0 0 0 0 0
-0.33 9 0 0 0 1 0 0 0 0 0
-0.39 6 0 0 0 0 0 0 0 0 0
-0.45 5 0 0 0 0 0 0 0 0 0
-0.51 4 0 0 0 0 0 0 0 0 0
-0.57 1 0 0 0 0 0 0 0 0 0

* = 10-3

Figure 14.

Strain ratio, r, versus strain amplitude, a,
of the rainflow cycles for the reconstructed history.
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Figure 15.

Scaling factor, F, versus blocks to failure, BN , for

the original and selected ARMA reconstructed
histories.

SUMMARY

The method for loading descriptions (shown above)
was developed in the framework of vehicle loadings.
However, it can generally be used for any application where
lengthy random loadings need to be presented in a concise
manner.  The simplified fatigue model can be applied to any
structure under complex loadings when the phase relationship
among load directions is approximately constant.  Both the
loading description and fatigue damage assessment allow for
an analysis of the structures’ weakest points prior to testing.
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