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(ABSTRACT)

The concise description of one- and multidimensional stationary and nonstationary
vehicle loading histories for fatigue analysis using stochastic process theory is presented
in this study. The load history is considered to have stationary random and nonstationary
mean and variance content. The stationary variations are represented by a class of time
series referred to as Autoregressive Moving Average (ARMA) models, while a Fourier
series is used to account for the variation of the mean and variance. Due to the use of
random phase angles in the Fourier series, an ensemble of mean and variance variations is
obtained. The methods of nonparametric statistics are used to determine the success of
the modeling of nonstationarity. Justification of the method is obtained through
comparison of rainflow cycle distributions and resulting fatigue lives of original and
simulated loadings. Due to the relatively small number of Fourier coefficients needed
together with the use of ARMA models, a concise description of complex loadings is
achieved. The overall frequency content and sequential information of the load history is
statistically preserved. An ensemble of load histories can be constructed on-line with
minimal computer storage capacity as used in testing equipment. The method can be

used in a diversity of fields where a concise representation of random loadings is desired.
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CHAPTER 1. INTRODUCTION

Engineering's primary objective is to design structures to fulfill a function and guard this
design against failure. A common failure mode is fatigue, i.e. cracking or disintegrating
of parts of the structure caused by repeated loading. Fatigue analysis, therefore, is an im-
portant part of the design process for any structure or component subject to repetitive dy-

namic loading.

The analysis with respect to fatigue failure gains more importance as structures are
designed, primarily for economic reasons, to have a finite life. Weight and size
consideration in efficient design mandate for a structure to survive safely all anticipated
operating loads, yet a structure must not be over designed to the degree that it becomes
uneconomical to built or operate. Particularly in the area of vehicle design it has become
the objective to design components to safely perform only over a prescribed service

interval.

One of the crucial elements in fatigue analysis is detailed knowledge of the operation
conditions and the associated loading to which the component in question is subjected.
For some cases the loadings can be estimated in advance of the analysis in many cases of
structural analysis, however, a preliminary design is necessary to obtain actual loadings,
which is done by subjecting the preliminary design to the environment in which the final

structure is supposed to operate.



Because the phenomenon of fatigue failure is still not fully understood, for complex
structures, analytical studies alone cannot provide sufficient information for a fatigue safe
design. Two methods for verification of a design are simulation studies and fatigue test-
ing. Fatigue testing exposes a structure to dynamic loads as they would be anticipated un-
der operating conditions and records the life to failure. For more effective and better con-
trolled testing it has become customary to perform many fatigue tests in a laboratory
rather than in the actual environment of operation. As testing equipment has become
more advanced, these laboratory fatigue tests provide the means for reliable and efficient
repetition of complex loadings. Simulation studies, such as Monte Carlo simulations, on
the other hand, are computer based calculations of the fatigue life according to a model
for the structure and the fatigue phenomenon, including uncertainties with respect to
structural and or loading parameters. For both fatigue testing and simulation studies an

efficient description of the loading environment is necessary.

In general, fatigue loadings are lengthy because fatigue failure occurs only after many
repetitions of the applied load. In the case of complex loadings with a variety of different
loading events, it is desired to reduce these lengthy records for further analysis. The two
main methods of reduction are the building of mathematical models to describe the loads,
or the actual loading data are condensed to fatigue relevant information only. From either
the formed model or condensed description, fatigue load histories then can be recon-
structed for simulation studies or for laboratory testing of test specimen or actual compo-
nents. The accurate and concise modeling of lengthy fatigue loadings is the objective of

this study.

Load modeling can be accomplished by two principal methods. Depending on the



problem, either a deterministic function or a stochastic process is used to reproduce es-
sential features of the original history. The deterministic approach uses a well defined
function to describe the original history. The stochastic approach attempts to describe the
load data in terms of a random process which has statistical characteristics similar to that
of the original history. If the load records are of random nature, as they are for many
structural components exposed to environmental loads, the stochastic approach is most

suitable.

Stochastic methods can further be divided into regression analysis and time series
analysis, where the former method assumes that the observations are statistically inde-
pendent and therefore disregards information with regard to the sequence of observations.
The latter method, on the other hand, takes into account the relation of observations over
time. Because for dynamic loadings observations will be related to each other, time series
analysis methods are used in this study to model loadings. In particular, a class of sto-
chastic processes referred to as Autoregressive Moving Average models, ARMA, are used

to represent random variations in load records.

Another distinction among random processes can be made with respect to stationarity.
A nonstationary record is recognized as one for which some characteristics, such as mean
or variance, change over time. This nonstationary behavior can be modeled in variety of
ways. In the current study a Fourier series description is chosen to account for nonsta-

tionarities.

Depending on the type of loading, a single channel or multichannel description may
be necessary. For the case where only one variable is under observation, such as strain in

one direction, a single channel description is appropriate. For the case, however, where a



multiaxial state of strain is to be investigated, a multichannel history will be observed

and needs to be modeled as such to account for interdependencies among channels.

The model proposed herein gives the first complete description of nonstationary
multichannel fatigue loadings using ARMA models. In comparison to other commonly
used methods of history reconstruction such as the Rainflow method, the To-From matrix
method and the power spectral density (PSD) method, the presented approach is superior
on four accounts. First, the model requires fewer parameters to accurately describe the
original loading. Second, the dynamic characteristics, also referred to as correlations, are
preserved in the reconstruction as it is the case only for the PSD method. Third, mul-
tichannel situations are covered as a consistent extension of the single channel case.
Finally, a truly stochastic description is achieved, such that regenerated records can be

infinitely long with no periodicity.

Including this introduction, the dissertation consists of the following chapters. A lit-
erature review containing an overview of random fatigue load modeling and ARMA
models in structural dynamics is presented in Chapter 2. The theory of ARMA models is
presented in Chapter 3. Fatigue life calculations as they are used in this study are re-
viewed in Chapter 4. The proposed random fatigue load model is presented in Chapter 5.
Case studies for uniaxial and multiaxial loadings are shown in Chapters 6 and 7, respec-
tively The dissertation is concluded in Chapter 8 with summarizing remarks and recom-

mendations for further work.



CHAPTER 2. LITERATURE REVIEW

A review of the literature pertinent to this dissertation is presented. First a review of
common methods for random fatigue load representations is provided. Furthermore, the

use of ARMA models in stochastic structural dynamics is reviewed.

2.1 Random Fatigue Load Modeling

Fatigue load histories are in general lengthy and of irregular nature. Three reasons (Beste
et al., 1991) make it desirable to find a concise description. First, the amount of storage
required can be reduced. Secondly, concentration on the fatigue relevant content allows
reducing the length of the history. Finally, manipulation of histories becomes possible,

including the superposition and extrapolation of histories.

In fatigue load reconstruction the strategy is to define some characteristic of the
original loading such as power spectral density, rainflow cycle content, etc., as the target
spectrum. A simulated history has to have similar characteristics to be a faithful recon-
struction, i.e., it has to meet the target spectrum. Furthermore, the load description needs
to allow for efficient regeneration of histories, preferably in real time (Buxbaum, 1979).
Two basic approaches exist to random load modeling (Bily and Bukoveczky, 1976).
Either only extreme values are being recorded and subsequently reconstructed, or the

whole history is taken into account.



2.1.1 Methods of Modeling Extreme Values

These methods are model free and they evaluate the time series via a count. Methods of
reconstructing only the extreme values reduce the required storage by discarding all inter-
mediate points. These methods work well for fatigue loading histories in the absence of
creep, because only the extremes induce fatigue damage, while intermediate points are ir-

relevant.

In the Rainflow Matrix method (Dowling, 1972; Perret, 1987; ten Have, 1989) the fa-
tigue relevant information is summarized in the form of a rainflow range mean matrix
containing the distribution of closed stress-strain hysteresis loops formed by the original
history. As a result, the rainflow cycles of the reconstructed histories are identical to
those of the original history, while the reconstruction yields histories with a different
sequence of loadings. The loading sequence, however, has been shown to affect the fa-
tigue life (Gassner, 1941; Buxbaum et al., 1991) and should therefore be preserved.
Finney and Denton (1986) quantified this effect on life for different reconstructions. The
sequence of events in a history reconstructed from a rainflow matrix is governed by
principals of the rainflow counting method, yet many possible sequences can be
reconstructed. Khosrovaneh (1989) and Khosrovaneh and Dowling (1990) show a
method to obtain reconstructed records which do not exhibit any distinct pattern, i.e., they
appear to be of random nature as the original loading. A more formalized approach, not
yet accepted in the international community though, to obtaining sequences with random

characteristics is presented by Kriiger (1985) and more recently Kriiger et al. (1992).

The To-From Matrix method (Haibach et al., 1976; Dowling and Thangjitham, 1987;

Fash et al., 1989) requires information concerning the transition behavior between adja-



cent peaks and valleys. Similar to the rainflow matrix method of reconstruction, the load
history is discretized into a convenient number of levels. The time series for peaks and
valleys is regenerated using the To-From Matrix without considering the intermediate
points. This method provides an identical number of peaks and valleys as of the original

history but results in different rainflow cycles and sequence of the original loading.

2.1.2 Methods of Modeling Complete Histories

These methods are concerned with the descriptions of random loadings based on correla-
tion theory. For these techniques, a model is formed which becomes a substitute for the
data, this leads to a concise description with few parameters. A model may be defined

either in the time or frequency domain.

A commonly used method proposed by Yang (1972) represents the random data by its
power spectral density, i.e., the distribution of the power of the process over frequency.
Wirsching and Shehata (1977) used this type of simulation, also known as the PSD
method, and verified experimentally its suitability. Therefore, it is generally accepted that
if the power spectral density of the model matches the data, a successful reconstruction

can be obtained.

Approaches in the time domain include the Markov method, which is based on a ran-
dom process that has a single step memory, i.e. the current value of the process depends

only on the previous value. Transition probabilities for any two adjacent points are de-



duced from the original history. This method is particularly successful for processes
which contain only correlation between two adjacent points. An extension to this method
is shown by Serensen and Brincker (1989) who derive a reconstruction method yielding

only extreme values.

A more general class of time series models called Autoregressive Moving Average
(ARMA) models also have been used in fatigue load modeling. These models in essence
match the spectral content of data to any desired degree. Moreover, they lead to concise
descriptions and operate in the time domain, allowing for efficient load reconstruction.
Figure 1 (Dowling et al., 1992) shows a typical stationary random load history and recon-
structions using the Power Spectral Density method, an ARMA model, the To-From

method, and the Rainflow Matrix method.

2.1.3 Fatigue Damage Estimation without Simulation

The most accurate procedure for fatigue analysis is to simulate a time history, identify
rainflow cycles, and then using a damage accumulation model, calculate fatigue life.
However, because this procedure is lengthy and requires many simulations to obtain an
accurate estimate, considerable effort has been made to estimate fatigue damage without

simulating time series.

Commonly used models for the description of the loading are the power spectral den-
sity function (Wirsching and Haugen, 1973; Wirsching and Light, 1980; Wu and Huang,
1993) and the Markov process (Kriiger and Petersen, 1985; Frendahl and Rychlik, 1993).
The distribution functions of rainflow cycles can also be estimated without simulating

time series. For the case of a Markov process, contributions are due to Rychlik (1989)
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Figure 2.1.  Portion of an original fatigue loading history and typical reconstructions
by PSD, ARMA, To-From, and Rainflow method, respectively.



and Bishop and Sherratt (1990) and for general Gaussian loads due to Rychlik (1992).

2.2 ARMA Models in Structural Dynamics

Autoregressive models were introduced by Yule (1927) in the context of modeling sun-
spot activity. Slutzky (1927) was the first to use moving average models to detect
cyclical trends in economic time series. Bartlett (1946) noted the important relationship
between ARMA models and systems characterized by linear differential equations. A
linear system sampled at discrete points in time will lead to a time series that is identical
to one obtained from an appropriate ARMA model. The book Time Series Analysis
Forecasting and Control by Box and Jenkins (1970 and 1976) unified different
approaches to ARMA model building and has become the standard reference.
Applications to engineering problems using ARMA models have appeared in an

increasing number since the early 1970's.

Efficiency with respect to storage requirement and regeneration effort and the equiva-
lence of an ARMA model and the response of a linear elastic system to random loads led
to the use of ARMA models in the field of stochastic structural mechanics. In particular,
the estimation of the response of randomly excited linear systems and the simulation of
load records have received attention. Random load modeling using ARMA models has

traditionally been concentrated in the fields of earthquake-, wind-, and ocean-engineering.

Gersch et al. (1973) obtained estimates of the period and damping values of a linear
multi-degree-of-freedom structure from random load histories via an ARMA model. Pi
and Mickelborough (1988) identified modal parameters of a structure from load records

using ARMA models. Li and Kareem (1990) obtained the response of a linear system
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excited by a forcing function formulated as an ARMA model. An emerging technique in
random vibration analysis called Monte Carlo simulation requires a large number of re-
cords of random loads to obtain reliable response estimates. Spanos and Mignolet (1989)

review at length the literature on ARMA models for Monte Carlo studies.

Methods for efficient simulation of random processes have been presented by
Samaras et al. (1985), Mignolet and Spanos (1987), and Spanos and Mignolet (1987) for
the univariate case. Methods for modeling multivariate time series are due to Gersch and
Yonemoto (1977) and Tiao and Box (1981). Random fields were introduced to ARMA
models by Naganuma et al. (1987), with the most recent extensions by Spanos and

Mignolet (1992) and Mignolet and Spanos (1992).

The modeling of a stationary fatigue loading is demonstrated by the matching of a fre-
quency domain target spectrum using an autoregressive model by Lin and Hartt (1984).
An experimental study showing the applicability of autoregressive processes to fatigue
load modeling is due to Sarkani (1990). Dowling et al. (1992) and Thangjitham et al.
(1993) showed the good agreement of rainflow matrices and fatigue life (both simulated
and experimentally obtained) for a typical stationary random ground vehicle loading.

Leser et al. (1993) show good agreement of the same measures for a nonstationary record.

For the case of earthquake ground motion modeling, both random variation and non-
stationarity are present. The so called Kanai Tajimi spectrum has been developed as rep-
resentative for the stationary random component of earthquakes. Spanos and Mignolet
(1987) developed ARMA models which approximated this target spectrum well.
Polhemus and Cakmak (1981), Cakmak and Sherif (1984), and Turkstra et al. (1988) use

a stationary ARMA model modulated by a deterministic function to account for the
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typical build up and decay of variance in earthquake acceleration time series. The
assumption of the earthquake records being piece-wise stationary led Chang et al. (1982)
to the method of modeling segments of the record individually by low order ARMA
models. Finally, time varying ARMA parameters can be employed to account for the
nonstationary nature of the observed series (Nau et al., 1982; Gersch and Kitagawa, 1985;
Toki et al. 1985; Deodatis and Shinozuka, 1988). Hoshiya et al. (1988) use an AR model
to describe a temporally and spatially propagating earthquake. A review of the literature

describing the use of ARMA models in earthquake engineering is due to Kozin (1988).

Wind velocities are simulated using ARMA models in the context of structural design
of buildings. The von Karman spectrum is deemed an authentic target spectrum for wind
loads. Good approximation to this target spectrum using ARMA models have been ob-
tained by Spanos and Schultz (1985, 1986). A tri-directional wind loading is modeled by
Spanos and Mignolet (1987), and wind velocity and air pressure on a cooling tower were
represented with an ARMA model by Reed and Scanlan (1983). The extreme values of a
wind loading were investigated by Tavares (1977), while Li and Kareem (1990) repre-

sented both input and output of the model of a wind loaded structure by ARMA models.

The simulation of wave kinematics is important in ocean engineering. The so called
Pierson Moskowitz (P-M) spectrum is often used as a realistic target to verify
simulations. Spanos (1983) shows pure autoregressive, moving average, and ARMA
models which agree with the P-M spectrum. Spanos and Mignolet (1987) and Mignolet
and Spanos (1988) demonstrate an ARMA model obtained via pure AR or MA models
respectively, which almost perfectly matches this spectrum. Other contributions to the
modeling of wave elevation are due to Holm and Hovem (1979), Houmb and Overvik

(1981) and Fines et al. (1981).
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Textbooks covering model order and parameter estimation techniques and practical
applications of ARMA models have appeared since the work by Box and Jenkins (1970,
revised 1976) by Chatfield (1980), Pandit and Wu (1983), Brockwell and Davis (1987),
Marple (1987), Kay (1988), Wei (1990), and Pandit (1991).
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CHAPTER 3. AUTOREGRESSIVE MOVING AVERAGE
MODELS

Characteristics regarding estimation and model building for Autoregressive Moving
Average, ARMA, models are discussed here. ARMA models are employed in this study
to represent the stationary content of random fatigue loading histories as they provide a

versatile method for accurate and concise modeling.
3.1 Model Description
According to Box and Jenkins (1976), the dynamic relationship between two sequences
¥, and x, observed at discrete time intervals, =1, 2, ..., which are related to each other,
can be represented by the linear, time invariant, and causal system
— _ 2

Y, =V, HV X +Vox =V + B+, B+, =v(B)x, (3.1)
where B is the so called back-shift operator such that B'x, = x, ;. For brevity, v(B),
which in general is of infinite order can, often with sufficient accuracy, be efficiently

represented by two polynomials, each of lower order than V(B), such that

v(B)=0©(B)/®(B). Therefore, Eq. (3.1) can be rewritten as:
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@(B)y, =O(B)x, (3.2)
where ®(B)=(1-¢B—¢,B*~...—¢,B") and ©(B)=(1-6,B- 6,8’ —...—6,B").

When both y, and x, are observed time series, for example they present the input and
output of a system, the modeling of v(B) is referred to as transfer function modeling and
v(B) is called the linear transfer function. If, however, only y, is observed due to lack of
information or desired simplification of the analysis, one can postulate an input x, = e,

and determine a transfer function v(B) such that:
v, =vee +vie_ +...=v(B)e, (3.3)

where e, is a Gaussian white noise sequence, i.e. a sequence of independent normally
distributed random variables with zero mean and constant variance, o, having a power
spectral density that is flat over a wide range of frequencies (Bendat and Piersol, 1986).

Then, y, is called the general linear process.

The desire for a parsimonious description of y, leads to the substitution of v(B) with

(©(B)/®(B)) and the observed series, y,, then can be rewritten as

e, =v(Be, (3.4)

®(B)y, =O(B)e, (3.5)
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and in summation notation

P q
z ¢iyt—i = zez‘et—i ¢0 =-1, 60 =—1 (36)
i=0 i=0

Therefore, the technique of fitting an ARMA model to an observed sequence of data
can be seen as an attempt to transform the observed sequence, y,, to white noise, e,, via

the inverse transfer function v™'(B)= ®(B)/0(B).

The two components of an ARMA(p,q) model are the autoregressive part AR(p) de-
fined by CI)(B) and the moving average part MA(g) given by G)(B). The autoregressive
and moving average components form individually meaningful models, CI)(B)y, =e, and
y, =0(B)e, respectively, but it is usually the full ARMA model that leads to the most
concise form equivalent to the general linear process of Eq. (3.3). Another characteristic
of ARMA models that can be useful in parameter estimation is that an ARMA model of

finite order can be represented by an equivalent AR or MA model of infinite order.

There are two important restrictions on the values the ARMA parameters can assume
(Box and Jenkins, 1976). The first restriction is with regard to the AR parameters. In or-
der to yield a stable model, i.e. a model leading to a time series that does not become un-
bounded, the following must hold. The roots of ®(B)=0 must lie outside the unit circle
of the complex plane. Similarly, a restriction on the MA parameters can be made. In or-
der for the inverted ARMA model, e, = (®(B)/O(B))y, , to yield bounded output, e,, the
following must hold. The roots of ®(B)=0 must lie outside the unit circle of the com-
plex plane. However, one can always transform the MA parameters, such that an invert-

ible model is obtained. While stability is necessary for a model to be used in simulating
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stationary series, invertibility is mainly useful in the step of model building and does not

have to be satisfied for simulating a time series.

The ARMA model can also be conveniently represented in the frequency domain
(Priestley, 1981). The one sided power spectral density, S(f), corresponding to an
ARMA(p,q) model is given in a closed form description as a function of the ARMA pa-

rameters

. . - 12
—2inf —dinf —2qinf
=677 =0, — . 6,7
2

(3.7)

N | =

S(f)=20,

=g =g -~ g e |
where f'is the linear frequency and i = V-1,

3.2 Vector ARMA Models

For the case where more than one time series needs to be considered a vector ARMA

model is introduced. The reason to model time series jointly is to incorporate dependen-

cies among them.

The n-dimensional time series y, = [yfl) o y,(")]T is expressed as

p q
Z oy, . = zeiet—i (3.8)
i=0 i=0

in which ¢, and 8, are matrices of order nxn, such as [¢, ] and [, ] and superscript T

indicates the transpose of a vector or matrix. While ¢, =—I  and 0, =-I  are without
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loss of generality assumed to be negative identity matrices of order nxn, e, is an n-di-
mensional Gaussian white noise series with zero mean and crosscorrelation according to
E [e e ] =V§

r-s rs

(3.9)

where V is a symmetric, positive definite, n X n covariance matrix of the noise and ¢, is
the Kronecker delta. Contemporaneous cross-correlations (correlations between chan-
nels) are expressed through off diagonal terms in ¢, and ©,, while auto-correlations

(correlations within a series) are governed by diagonal terms in ¢, and 0, .

Equivalently to the one-dimensional closed form representation of the power spec-

trum, the spectrum, S( f ), of the n-dimensional process is (Kay, 1988)
P . q . g . ! p . Tﬁl
S(f)=2/ D e | |0, | V|> 0 ||p) fe” (3.10)
J J j=0

with 0 < f <1/2 and where * indicates the complex conjugate of a matrix.
3.3 Parameter Estimation

Statistical inference of ARMA parameters from observed data may be performed either
through maximum likelihood estimators or through moment estimators. Both techniques
yield efficient, unbiased and consistent estimates. However, the maximum likelihood
estimation leads to nonlinear equations with possibly more than one relative maximum

(Kay, 1988). The nonlinearities are so severe that the commonly used Newton-Raphson
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(Akaike, 1973) approach will not always converge to a solution. Therefore, approximate
procedures in linear form based on the method of moments estimators are often used.
Two principal methods coexist using an intermediate approximate model either of pure
autoregressive or pure moving average type. These methods, while approximate in na-
ture, will converge to the statistically optimal maximum likelihood estimates for estima-

tions based on long time series (Kay, 1988).

Using the autocorrelation function of the given data, a large order AR model can be
built, which is assumed to be a reliable approximation of the target spectrum. The autore-
gressive parameters can be estimated via a system of linear equations. The parameters of
the desired ARMA model are arrived at by minimizing the difference between the
transfer functions of the pure AR model and of the ARMA model. The two stage least
square procedure, as introduced by Theil (1958) and applied to ARMA modeling by
Durbin (1960), provides the means for the minimization. Algorithms are described for
one dimensional ARMA models by Gersch and Liu (1976) and Gersch and Yonemoto
(1977), for multidimensional cases by Samaras et al. (1985) and for modeling random

fields by Mignolet and Spanos (1992).

For the case of multidimensional time series, a similar two stage parameter estimation
technique, going from a pure MA model to an ARMA model, has been proposed by
Spanos and Mignolet (1990) and has been extended to the random field case by Spanos
and Mignolet (1992).

The procedure by Samaras et al. (1985) for multi-dimensional ARMA models is cho-

sen in this study for its numerical efficiency. An analogous procedure for single channel
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estimation is presented by Gersch and Liu (1976). However, the algorithms shown are
for the special case where autoregressive and moving average part are of the same order.
Therefore, to allow for more flexible modeling, the method was extended to the general
case where both parts may be of different order. This generalized algorithm is reviewed

in the following.

To estimate the ARMA parameters for the vector time series, y,, shown in Eq. (3.8)

the target crosscorrelation matrices C, (k) will be used, where

C,(r-s)=Ely,y] (3.11)

However, knowledge of Cye(—k)for (k=0,1,...,q) will also be required and is
therefore derived first, the so called first stage, via a large order AR model. An AR

model of infinite order is defined as,
D0y, =-Le (3.12)
i=0

where ¢, =—I,, and ¢, are the autoregressive parameters to be inferred from y,. This de-
scription via an AR model is equivalent to the ARMA model of Eq. (3.8) and will also
possess the same cross-covariance matrix, Cye(k). Therefore, by post-multiplying both
sides of Eq. (3.12) by y/_, , taking the expectation, and making use of

Eley’,]=C,(-k)=0 for k>0 (3.13)

the following is obtained
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> 6C, (i-k)=0 for k>0 (3.14)
i=0

Rewriting Eq. (3.14) in matrix from leads to the so called Yule-Walker equations
G 3 |0 » o fer ) L) L] (3.15)

In practice, it is necessary to truncate the infinitely long expression of Eq. (3.15) to an

approximate relationship such as

b 6 .. 4l
c,,(0) c’ (1) cr(P-1)|
0 e . ar] GO G0 GlP=2)) GO
cyy(é—1) C,(P-2) cyy.(o)

If a sufficiently large value for P is chosen, the AR model will provide a good ap-
proximation to the ARMA model of Eq. (3.8). In order to obtain values for C,, (-k), Eq.

(3.12) is post-multiplied by e/, e/, ... , e , respectively, and after taking expected val-

ues one obtains

C,.(0)=V (3.17)

and
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k ~
~C,(-k)+ > ¢C  (i-k)=0 for k=1,2,....q (3.18)
i=1

where use has been made of the relation
C,.(k)=0 for k>0 (3.19)

which states that the model is causal, i.e. current observations are independent of future

noise input.

In order to obtain the matrix V, both sides of Eq. (3.12) are post-multiplied by y;

and the expectation is taken, leading to

> ¢C, (i)=-C,(0) (3.20)

i=0

If Eq. (3.17) is substituted into Eq. (3.20), it yields

P

~

Vi ==>¢C, (i) (3.21)

i=0

Using Egs. (3.17) and (3.18) the crosscorrelation matrices Cye(O), Cye(—l),

>

C,, (—g) can be obtained recursively.

Now the parameters ¢. and 0, in the ARMA model may be determined in the second

stage of the estimation. Rewriting Eq. (3.8) as
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yt:[e1 . 0, 0 . (|)p][—et_1 I S yt_p]T+e, (3.22)

and post-multiplying both sides of equation (3.22) by the matrix

I:—e,T_l . —e) . Yo, .. yL p] and taking the expectation, the following relation is
obtained
[_Cye(_l) tte _Cye(_ q) Ciy(l) e Ciy(p)]

3.23
6 .. 6, ¢ ... oD 6.23)

=

where D is defined as

v 0 ~C’,(0) 0o |
0 \Y% -Cl(1- . =Cl(p-

D=|--x1s — Cy( ; ) . ._é..zi(.f’._ ._,lff._) (3.24)
-C,.(0) ... -C.l-¢); C,(0) wp=1)
|0 -C,(p-q): C,(p-1) C,0) |

which can be solved for the ARMA parameters
6 ... 0 ¢ ... ¢
g v 2 . s (3.25)
:[_Cye(_l) tee _Cye(_Q) ny(l) tee ny(p)]D

This concludes the derivation of the estimation algorithm. It is seen that two sets of
linear equations need to be solved in order to estimate ARMA parameters for the

observed vector time series, y,.
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3.4 Model Building

The interpretation of an ARMA model as the transfer function that transforms an
observed series to white noise is underlying all criteria for model order determination
found in the literature. ARMA models for various values of (p,q) are fitted to the data
and the appropriate model is sought through criteria based on the residuals, e,, obtained
from e, = ®(B)/O(B)y, =v'(B)y,. In essence, these criteria state that the proper model
has been found when the series of residuals, e, is close to white noise. Where closeness

is measured by some statistical criterion.

Some commonly used criteria are Akaike's Information Criterion, AIC, (Akaike,
1974) which investigates the relation of a weighted sum of the variance of the residuals
and the model order. Pandit (1973) uses a test based on the F-distribution to compare the
variance of residuals for competing models. Finally, Box and Jenkins (1976) introduced
a measure called the O-statistic that indicates proper model order through measuring the

autocorrelation of the residuals.

Most time series literature is concerned with series that contain 50 to 500 observa-
tions. For such short records a statistical test will lead to an ARMA model with orders p
and g well below hundred, in fact, often below ten. For the case where the observed se-
ries is much longer, say of order 10* to 10°, however, any statistical test will be restrictive

and demand ARMA models of very large order.

Therefore, a new criterion for model order determination is presented that is based on

the comparison of the observed time series and the time series obtained from a proposed

24



model. The advantage of this scheme is that a more concise model will be obtained than
would be if any of the above mentioned methods was chosen. This is particularly true for

the case where one needs to find an ARMA model for a large data set.

After the parameters for a number of ARMA models are estimated, a preliminary se-
lection is made based on the closeness of the power spectrum of an ARMA model to the
spectrum of the original loading. A generally applicable measure of association between
two variables is provided through the correlation coefficient. For two random variables, x
and y, the correlation coefficient is defined via the covariance, cov(x, y), and standard

deviations, o, and o, as (Miller and Freund, 1977)

= cov(x,)) (3.26)
’ 0.0,
while an estimator is obtained as
N
PUCES S
i=1 (3.27)

i= l 1:1

where x, and y, are sample points and X and y are estimators for the mean of the respec-
tive variables and N is the number of sample points. This definition implies that
—-1<p, <1 and for p , =0 observations of x and y are uncorrelated, while for p =

they are identical. In general, the nearer the value of p , to unity, the closer the resem-

blance between the two.
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The closeness of the power spectrum, S(f), of the original loading to the one ob-
tained from an ARMA model is therefore measured by their respective correlation coeffi-
cient, pép ) The model with the smallest number of parameters at a given correlation
level, e.g. pé” ) = 0.8, pép ) = 0.9, etc., is chosen for further study. This allows ruling
out a large number of models due to their lack of matching the dynamic characteristics of
the original record. The final model selection is based on a comparison of fatigue lives
obtained for the original loading and a loading reconstructed using the ARMA model
corresponding to a particular correlation level. A criterion for this comparison is
introduced in Chapter 4. Unlike the rest of the time series literature, this study ties the

step of model building directly to the application of the simulated time series.

3.5 Nonstationarity and ARMA Models

In many cases of structural dynamics the loadings are of nonstationary nature. The two
most common parameters to change with time are the mean value and the variance. Non-
stationarity with respect to the mean value is handled through subtraction of the presumed
mean variation. This subtraction is commonly referred to as detrending (Box and
Jenkins, 1976) and is usually the first step in any time series analysis. ARMA models are
inherently stationary descriptions of random processes. However, attempts have been
made to apply them to cases which involve nonstationarities, particularly for the case
where the variance changes over time. This is due to the fact that ARMA models were
originally applied to earthquake loadings, which are inherently nonstationary with respect

to their variance.

One method used for handling such nonstationarity is to divide the observed loading

into segments which can be considered stationary (Chang et al., 1982). An ARMA model
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then is fitted to each segment. This approach works well if it is clear how to decide on
the length of the segment. Applications concerned with modeling earthquake loadings
have used this method successfully because the variance changes in a characteristic
manner, similar for all earthquakes. However, this approach is problematic in the case of
rapidly changing values of variance since the segment to be considered stationary needs
to be short, but it is difficult to obtain a reliable estimate of the ARMA parameters if the

series is short.

Another approach is to estimate ARMA parameters that vary in time. This includes
the parameters describing the autoregressive part, the moving average part and the vari-
ance of the input white noise sequence (Gersch and Kitagawa, 1985, Nau et al., 1982). It
is often difficult, however, to obtain reliable estimates for such parameters, particularly

when only a limited amount of data is available.

A third approach, chosen in this study, is to estimate a scaling function, s,, which will
model the nonstationarity with respect to variance. The function s, is inferred from the
observed record, x,, such that the quotient, x,/s,, is stationary with respect to variance

(Hsu and Hunter, 1976; Polhemus and Cakmak, 1981; Nau et al., 1982).

3.6 Justification for the Use of ARMA Models

There are four desirable characteristics of ARMA models that make them suitable for ap-

plication to random fatigue loadings of dynamically loaded structures:

First, the ARMA model framework allows for systematic direct analysis of discretized
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load records sampled at equidistant time intervals. The complete cycle of model building
and parameter estimation can be performed without additional knowledge of the underly-
ing dynamics of the system. Therefore, a load model can be obtained on an empirical
basis from observed data and regeneration performed by evaluating a system of difference
equations. This is in contrast to building a dynamic model of the structure via a system of
differential equations, the equations of motion, and obtaining response data through nu-

merical integration of this system.

Secondly, there is a theoretical basis for using ARMA models to simulate the
sampling of a continuous time random process. Bartlett (1946) stated the physically
meaningful interpretation of an ARMA model as the solution of a linear differential
equation. Given a linear dynamic system of order #n, subjected to a white noise forcing
function and sampled at equal time intervals, the samples will be identical to those
obtained from an ARMA(n,n—1) model given the right parameters ¢, and 6,. This
important result provides a link between dynamic systems in discrete time and continuous
time. Moreover, the simplicity in forming a time series via an ARMA model is not
achieved at the cost of accuracy. The ARMA model correctly accounts for the irregular
behavior of the equivalent continuous time process and it is in fact more efficient to
simulate a time series via an ARMA model than numerically integrating a differential

equation (Nau et al., 1982).

Thirdly, ARMA models lead to the most concise description of a random loading of
all proposed methods. The level of reduction is due to the fact that the actual data are re-
placed by a model instead of being summarized through some counting method. No arbi-

trary level of discretization needs to be imposed as necessary for the counting methods. It
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is rather the observed data and its inherent correlation structure that will dictate the neces-
sary number of parameters for an accurate description. An observed record of theoreti-
cally infinite length can be characterized by a number of parameters that is usually much
less than one-hundred and often in the range of five to twenty-five (all references in the
literature review fall into this range). This is in contrast to the counting methods for
which the storage requirement depends on the desired resolution. Typically, rainflow
matrices are of size 32x32 or even 64x64, which translates into storage requirements of

1024 or 4096 parameters, respectively.

Finally, the reconstruction of random load records is extremely -efficient.
Regeneration merely involves the backward calculation of a difference equation of low
order. This is in contrast to the power spectral density method, for which, for each point
in the time series to be generated, all frequency components need to be used via a discrete
inverse Fourier transform. While this process has become more efficient since the
introduction of the Fast Fourier Transform (Cooley and Tukey, 1965), it still requires
more calculations than an ARMA reconstruction. Moreover, truly randomly distributed
records are obtained, whereas for the case of Rainflow reconstruction no clear method has
evolved to achieve this. This is particularly true for the case where more than one
variable needs to be considered, since it is physically not clear what constitutes a cycle for

the case of multiaxial loading.

On the other hand, ARMA models are problematic in their application to fatigue

loadings for the following reasons:
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The procedure of model building and parameter estimation is not straightforward but

rather iterative.

Moreover, practical estimation procedures are necessarily approximate. Model order
determination and handling of nonstationarity are areas of current research and have not

been resolved entirely, particularly for the multidimensional case.

For the case of fatigue load modeling it is necessary only to obtain time series that
consist of extreme values only. ARMA models, however, generate time series that
contain extremes and intermediate points necessitating removal of the intermediate points

prior to some application.
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CHAPTER 4. FATIGUE LIFE CALCULATION

Fatigue calculations as used in this study are presented here. The first in depth study on
fatigue is due to Wohler (1858) who investigated failures in railroad axles. Research in
the area is still active till today, because the actual phenomenon of fatigue is still not quite

understood.

Failure due to fatigue occurs in two stages. The first stage is the so called initiation
stage, i.e., the time it takes for the loaded component to show a detectable, engineering
size, crack. The second stage is the crack growth stage, i.e. the time it takes for the initial
crack to grow until final failure of the component occurs. This study will consider only

the life of the component until an initial crack occurs, the so called initiation life.

Today two approaches dominate the analysis of predicting fatigue life until the initia-
tion of cracks. The so called stress based approach as introduced by Wohler (1858) ana-
lyzes stresses in the component under study. It is still the most popular method in fatigue
analysis due to its simplicity and overall reliability. The so called local strain approach,
was developed in the late 1950's through early 1960's (e.g. Coffin and Tavernelli, 1959;
Manson, 1965), an overview is being provided by Dowling et al. (1977). The strain based
approach concerns itself with the plastic strains occurring at the point in the material
under investigation. Both the local strain and stress based approaches relate the fatigue

life of a component to the applied loads through a strain or stress versus life curve. This
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curve relates the number of cycles to failure for a given stress or strain range, where the
term cycle refers to a complete reversal of stress or strain, and the range is twice the
amplitude of this reversal. Most materials will deform plastically under cyclic loading,

and this plastic deformation will induce hysteresis loops, causing fatigue damage.

Cycle counting refers to the analysis of spectrum loadings to identify damaging hys-
teresis loops. A variety of methods, such as peak counting, range counting, and level
crossing counting have been proposed to count cycles, but the rainflow counting method
introduced by Endo et al. (1974) is now the most widely accepted; see also ASTM
(1987).

The term cumulative damage was introduced to account for fatigue due to loadings
where not all cycles have the same range. This type of general irregular loading is often
referred to as a spectrum loading. The damage caused by a single cycle is the inverse of
the number of cycles to failure. To calculate the total damage for an irregular loading a
variety of damage accumulation rules exist, e.g. Manson et al., 1967; Miller and
Zachariah, 1977; Hashin and Rotem, 1978. The Palmgren (1924, 1945) - Miner (1945)
rule, which asserts that fatigue failure occurs when the summation of damage of all cycles
reaches unity, is the best available method, Schiitz (1976) concluded. This simple rule
works satisfactorily according to Dowling (1972) if care is taken with respect to cycle

counting, mean stress effect of the loading, and overstrain effects.

4.1 Uniaxial Case

Loading situations where the applied load causes proportional stressing are the most

widely studied. It is for this situation, such as bending, or tension, or torsion, that the lo-
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cal strain approach was developed. The local strain approach assumes that fatigue dam-
age is controlled by the surface strain at a critical location such as a notch. After perform-
ing a rainflow cycle count on the loading histories, there are two possible approaches.
They are the so called fu// analysis, which takes actual mean stresses into account, and the
so called bounded life calculation, which does not consider actual mean stresses, but

places physically meaningful bounds on the expected life.

Usually, the first step in the local strain approach is to convert the given nominal
stress to a local notch stress-strain response. This is achieved through elastic plastic
analysis incorporating the geometry of the specimen and is well established in the
literature, e.g. Bannantine et al. (1990), Dowling (1993), Fuchs and Stephens (1980), and
Socie (1977). In this study, however, the issue of obtaining the local stains is avoided by
assuming that the recorded loading histories are the surface strain at some critical loca-
tion. Local stresses, therefore, can be obtained directly from local strains using the cyclic

stress-strain curve.

If the loading history is assumed to repeat itself, the resulting stress-strain hysteresis
loops will consist of one major cycle due to the extreme peak and valley in the history
and all remaining minor cycles will lie inside the major cycle. A typical stress strain

response for the major and a minor cycle is shown in Fig. 4.1.

To perform the fatigue life calculation, it is necessary to have the stable (half-life) cy-

clic stress-strain curve (Landgraf et al., 1969) and the strain-life curve for the material,

1e.,
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Figure 4.1.  Outermost, L,,, and a typical inner, L, stress-strain hysteresis loop.
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where ¢, and o, are the strain and stress amplitudes, respectively, E is the elastic modu-
lus, N, is the life in cycles for the case of zero mean stress, and the remaining quantities,
&y, 0, H', n', b, and c are material constants obtained from curve fitting experimentally

obtained fatigue stress-strain-life data.

The effect of mean stress o on life may be estimated, for example according to

Morrow (1968) using the following relation
1
> b
N=N,|1-=- 4.3)

where N is the life in cycles for the case of nonzero mean stress.

A particular rainflow cycle, C,

;» which forms a closed local stress-strain hysteresis

loop, L, such as the one shown in Fig. 4.1, with means, o, and ¢,, and ranges, Ao ; and

Ag_/, causes damage, D@/' According to the Palmgren-Miner rule, the damage, D@/’ 1s de-

fined as

=N (4.4)

i
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where n; and Ny i,j=1,2, ..., M, are the numbers of cycles counted and the number

of cycles to failure (life) for the given cycle, C;, respectively, and M is the number of

equal class intervals the loading range was divided into. The component life, N, is then
M M

calculated from the induced damage due to z z n; rainflow cycles as
i=1 j=1

Ny :(iil)zyj (43)

where N, is given in terms of the number of blocks (repetitions) of the load history.
4.1.1 Full Analysis

For the case where the complete loading history is available and assumed to repeat itself
continuously, the history may be reordered to start with the highest absolute value of
strain. This reordering simplifies the subsequent calculation of stress and strain for each
cycle significantly. Using Eqgs. (4.1)-(4.3), the fatigue life for each cycle formed can be
calculated, where it is possible to detect mean stress and strain for each cycle and account
for their influence on fatigue life accurately. This leads to the most accurate analytical

life prediction currently available (MTS Systems, 1991).

4.1.2 Bounded Life Calculation

When the load history is reduced to a rainflow matrix, information regarding the
sequence of loading is lost despite the fact that this sequence may affect fatigue life.

Socie et al. (1979), therefore, motivated the idea to put bounds on the expected life of a
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component subjected to loadings reconstructed from rain-flow matrices. Conle and
Landgraf (1983) submitted a complete solution to this problem, Dowling and

Khosrovaneh (1989) and Khosrovaneh (1989) provided more detail.

Cycles that are identified by their range and mean value in strain then permit one to
place bounds on the possible local mean stress for the sub-cycle, as shown in Fig. 4.1 for
the lower bound, and in Fig. 4.2 for the upper bound. Similar bounds may be placed on
the local mean stresses for all rainflow subcycles. These can then be used in two separate
life calculations based on Egs. (4.1)-(4.3). These bounds represent the extremes in life
from all possible sequence that could be reconstructed from a rainflow matrix. A life pre-
diction according to the full analysis, will, therefore, always fall within these bounds. It
should be noted that these bounds are usually reasonably close and give life predictions
that are well within the scatter of experimentally obtained results. Moreover, for low
strain levels, i.e. at long lives, the damage induced by small cycles becomes insignificant.
It is the major cycle which determines almost entirely the resulting fatigue life. The mean
stress of the major cycle is properly accounted for and, therefore, the bounds will con-

verge to each other as the strain level is lowered.

4.1.3 Criterion to Compare Uniaxial Fatigue Lives

In Chapter 3 it was shown that a criterion to compare the closeness of two records with
respect to their fatigue lives is needed. The bounded life calculation places physically
meaningful bounds on the life of a component. If this calculation is applied to an original
loading, a possible criterion is to demand that any reconstructed loading has a life, calcu-

lated according to the full analysis, which is (nearly) inside these bounds.
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ing to upper bound of loop in Fig. 4.1.



4.2 Multiaxial Case

Multiaxial stress or strain states occur when the loading on the structure is in more than
one direction, or when the geometry of the component is complex. Fatigue life calcula-
tions for a multidimensional stress or strain state are an area of current research. No sin-
gle method has emerged as a reliable analysis tool to predict fatigue life and correlate test

results. Rather three different approaches are pursued and reviewed by Leese (1988).

The first method uses an energy based criterion to identify the amount of plastic work
required to cause fatigue failure (Garud, 1981). While this method gives predictions
which agree with experimental results, it is difficult to integrate this method into design
and testing of components. Furthermore, for long life, only little plastic work is involved
and the effect is difficult to quantify. Finally, fatigue damage is induced along preferred
directions, but an energy approach is a scalar concept thereby ignoring the physical proc-

€Ss.

Another approach is based on the effective stress or strain concept as derived from
classical theory of yield criteria. This procedure reduces the three dimensional state of
stress to an equivalent or effective uniaxial stress. This effective stress then can be used
in combination with the uniaxial local strain approach to estimate fatigue life. Brown and
Miller (1982) reviewed the different methods in this approach. An advantage of this
method is its simplicity, which makes it useful for basic engineering applications. Also,
this method gives good predictions in high cycle fatigue, i.e. long life. On the other hand

this method performs poorly in the case of nonproportional loading, i.e. where the princi-
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pal axes of stress or strain rotate during loading. Moreover, no physical interpretation

between the effective stress or strain and the fatigue phenomenon exists.

The third and most recently developed method to model fatigue life is the critical
plane approach (Brown and Miller, 1973). This model considers the plane in the material
on which the combined shear stress amplitude and mean normal stress, responsible for
initiating fatigue, are most severe. Brown and Miller (1985) point out the need for two
critical planes to distinguish between crack initiation and crack growth. The critical plane
approach yields good agreement between experiment and prediction, even for nonpropor-
tional loading. Even though a commonly agreed on criterion for defining the critical
plane has not been found, the critical plane approach seems to be the most suitable
approach. This is because of its correct physical interpretation of how damage is induced

and cracks will actually grow.

4.2.1 Simplified Critical Plane Approach

Juneja (1992) developed a multiaxial fatigue damage model for approximately propor-
tional loading. This model is used in the current study to confirm the agreement in life
for multiaxial load reconstructions, and it is therefore briefly reviewed. The analysis,
based on the physical interpretation of the fatigue damage process, is conducted by first
obtaining the critical fatigue damage orientation. The critical plane is found via a
histogram technique, introduced by Bonnen et al. (1991). First, the principal strain
vectors, i.e., the principal strain values and their corresponding orientations, with respect
to a reference orientation, are obtained for each point in the history. A histogram of the

principal strain values and their corresponding orientations is then formed for the entire
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history. Since the counts in the histogram represent the number of data points in the
history for which a particular combination of principal strain value and respective
orientation occurred, the distribution of these counts for a particular principal strain angle
indicates the cycling of the strain events for that orientation. The orientation for which
the largest spread of principal strain values is covered with the most nonzero values in
different bins is chosen to be the critical direction. The fatigue cracks initiate and grow
on this critical plane and lead to failure of the component. After selecting the critical
plane, the strain history is transformed along and perpendicular to this plane, and these

are taken to be the new principal directions.

Two fatigue failure modes are considered. First, an analysis investigating failure due
to normal strain on the critical plane is performed. The uniaxial cyclic stress-strain

relation of Eq. (4.1) is modified to a similar form

g, ="u +("a J (4.6)

where ¢, is the effective strain and &, the effective stress amplitude, respectively. More-
over, the material constants, £, H', and n' of Eq. (4.1) are adjusted to reflect the biaxial

state stress state on the critical plane and become E,, H', and n/, respectively.

The modified strain life equation then becomes

1-vA4

VI-A+ 27

A

(2N0)b Lo 1-0.54

TZa+ 2

o :
« =g (2N,) (4.7)
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where v is Poisson's ratio and A is the principal stress amplitude ratio.

Juneja (1992) proposes to account for mean stresses by modifying Morrow's model

such as

N:No(l— EJ b (4.8)

where & is the effective mean stress and &} the effective fatigue strength coefficient.

The strain life equation incorporating mean stresses according to the Smith-Watson-

Topper (Socie, 1987) model is

r2

o % — e QN) + %(w)” 4.9)

max

where ¢, is the principal strain amplitude and o, is the maximum stress on the princi-

pal strain plane during a cycle.

The other failure criterion considers the case where shear strains dominate the damage
on the critical plane. The shear strain model proposed by Socie (1987) considers the
maximum shear strain amplitude, coupled with the tensile stress perpendicular to the
plane of maximum shear strain, to be the damage parameter in the strain life equation.

Including mean stress effect the strain life equation is
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where y'; is the shear fatigue ductility coefficient, 7, is the shear fatigue strength coeffi-
cient, G is the shear modulus, y,  1is the maximum shear strain amplitude, o, is the
maximum tensile stress perpendicular to the maximum shear strain plane, and o, is the
yield strength. According to Socie (1987), the shorter of the two lives of Egs. (4.9) and

(4.10) should be taken as the most appropriate estimate of life.
Using the Palmgren-Miner rule, the fatigue life can be calculated for irregular

loadings. All three life calculations are performed in this study according to Egs. (4.7),

(4.9), and (4.10) and the shortest life, i.e. the most conservative estimate, will be reported.
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CHAPTER 5. RANDOM FATIGUE LOAD MODEL

The model developed to describe fatigue random load histories is introduced here. It is
applicable to both stationary and nonstationary cases, and nonstationarities can be mod-
eled as being either deterministic or stochastic. Moreover, the single channel case is in-

cluded as the limiting case of the presented multichannel model.

5.1 Assumptions

The time history is a superposition of a zero-mean stationary random process and events
which affect the variation of both the mean and variance. Mean and stationary random
components contribute distinctly to the power spectral density (PSD) of the combined
process. The mean variation is of slowly varying nature and contributes only to the low
frequency range of the PSD, while the stationary random variation, however, may affect
the PSD at any frequency. The variation in variance, even though also assumed to be of
slowly varying nature, however, cannot be detected in a PSD plot of the whole history. It
could only be seen if the evolutionary power spectral density (Priestley, 1965), i.e., the

PSD as a function of time, was known.

Mean and variance variation of each channel are assumed to be independent of the

variations of other channels, while stationary random variations are assumed to be corre-
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lated among channels. Moreover, the nonstationary variance and stationary random com-

ponents are independent of each other.

For the cases studied, the random loadings represent actual data of the strain response
at a given point of a vehicle traveling over a rough road. The irregular road profile in-
duces strain, which has a stationary random nature, while maneuvers, such as steering or
change in velocity, induce nonstationary variations in strain with respect to mean and
variance. The assumption of maneuvers being of slow varying nature is justified through

the analysis of actual driving behavior (McLean and Hoffmann, 1971).
5.2 Time Series Model

To represent the multichannel random fatigue loading history with nonstationary mean

and variance variation, the following model then is employed:
X,=m, +s§,-n, (5.1)

where x, = [xt(l) x(")]l represents the underlying history, consisting of n channels,

t
m, = [mt(l) m,(")]l is the nonstationary variation in the mean value, s, is a (nxn) di-

(i

) ) as the scaling functions accounting for the variation in

agonal matrix with elements s

(1)

A nf")]T a zero-mean stationary random process. The follow-

variance, and n, = [n
ing sections will show how each of the components of Eq. (5.1) are modeled. For sim-

plicity, the derivation will be shown only for the scalar components, m”, s, n'” where
the vector and matrix expressions are obtained by combining all » components. Also for

convenience, the superscript i will be dropped where it is clear that a component of the
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vector or matrix is implied. Also, it is understood that the parameter ¢ refers to discrete

points in time, as this study is concerned with modeling sampled time series.
5.2.1 Mean Description

To minimize the number of parameters necessary to characterize the mean variation in a

deterministic manner a truncated Fourier series is used such that

M/ll
m, = %ao + [, cos (@yktAt )+ b, sin(wktAt)] (5.2)

k=1

where At is the length of the sample interval, @, =27/(NAt) is the fundamental fre-
quency, M, and N are the number of terms in the truncated Fourier series and the total
number of sample points of the history, respectively, and a, and b, are the discrete
Fourier coefficients. For the case of M, < (N/2-1), m, will be approximating the low
frequency content of x,, i.e., its mean variation. The value of M is found such that the
difference between the original history and truncated Fourier series yields a process, d,,

which is stationary with respect to it's mean,
M, (5.3)

To find the parameter M, one method is given by Buxbaum and Zaschel (1977), who
analyze the dynamic system to decide which part of the response spectrum is due to sta-
tionary random loadings and nonstationary loadings. Filtering in the frequency domain
allows one to separate the two components. This, however, is often difficult as informa-

tion regarding the dynamic system characteristics and the actual input spectrum are
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seldom available. Therefore, to determine whether the series d, is indeed stationary with

respect to its mean value, the methods of nonparametric statistics are used.

5.2.2 Variance Description

The remaining zero mean component, s, -n,, then needs to be separated into its respective
components. To model the scaling function, s,, in a deterministic manner, a method simi-
lar to the one for the mean description is used. The scaling function, s,, is defined as the
function that renders the quotient d,/s, stationary with respect to variance. This is
equivalent to saying that s, is defined as an estimator of the standard deviation of d,. In
order to estimate the standard deviation of d, a procedure as shown by Nau et al. (1982)

is employed.

For the zero mean time series, d,, sampled at discrete equally spaced intervals, a sim-

ple estimate, &, for the true variance, o7 , is obtained via a moving window such as

=

&= w, ,d (5.4)

=

w =1 w20 (5.5)
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To determine an appropriate size, n, of the window, inference methods from classical
statistics can be used. Via a Chi Square test a confidence interval can be constructed

(Miller and Freund, 1977) such as

2 ~2 2
Zn—l,l—a S O-_, S anl,a (56)
n—1 o’ n—1

t

where o7 is the value of the true variance, &, is the estimated variance, and y,_, , indi-
cates the Chi Square distribution with (n—1) degrees of freedom at confidence level «.
For an acceptable relative maximum error of 25% the following must hold
0.75< 5’ / 07 <125. These bounds, with a chosen value of & = 0.9, require a minimum
number of n =96, therefore, a value of n =100 is chosen to accurately estimate the true

. 2 . .
variance, o, . For other confidence levels and relative maximum errors see Table 5.1.

The simplest weighting function is the rectangular one, i.e. w; = 1/ (n +1). How-
ever, it is usually preferable to use a more gradually varying window, such that neighbor-
ing points have a stronger influence on the estimate of the variance than points that are
further away from the current observation. Nau et al. (1982) use a cosine bell shaped

window, while in this study, for simplicity, a triangular window is introduced such that

izj for OS]SE
n 2
w, = 4 4 ) (5.7)
-—Jj+t— for —<j<n
n n 2

Nau et al. (1982) show that the estimate of the variance via Eq. (5.4) tends to be bi-

ased in a systematic way. Peak values in variance will be underestimated, while
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Table 5.1.

Chi-Square distribution confidence intervals.

n - sample size

Table 5.2.

error o =098 o =0.95 o =0.90
10% 1024 731 519
20% 274 193 134
25% 196 138 96
30% 132 93 64
40% 79 56 38
50% 54 38 26
Student's z-distribution confidence intervals.
n - sample size

error o =098 o =0.95 o =0.90
10% 451 320 226
20% 126 90 64
25% 90 63 45
30% 60 43 31
40% 36 26 19
50% 25 18 13
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rate estimate a correction could be introduced to account for this known deviation. How-
ever, as a concise, and therefore only approximate, description of the variance is desired,

no further refinement is performed.

0, then gives an estimation of the standard deviation of d, and can, therefore, be used

to derive an estimate for the scaling function, s, .

The next step is to concisely represent the standard deviation, &,. The fact that o, is
not evenly distributed makes it difficult to postulate models that would describe it.

Therefore, a transformation due to Box and Cox (1964) is commonly used to enhance

symmetry

55 _ {5f for A=#0 (5.9)

logs, for A=0

BC

where 0,

indicates the Box Cox transform of &,. The parameter A of this power
transformation leads to a logarithmic transformation for 4 =0 and to no transformation
for A=1. The parameter A is chosen such that the transformed series has zero skewness,
i.e. it becomes symmetrically distributed about it's mean, in order to facilitate modeling
by a harmonic function. If more than one value of A fulfills this criterion, the
transformed time series corresponding to these values of A are obtained and their
respective mean and variance are calculated. The distribution of the transformed series
are compared to normal distributions with the given values of mean and variance for each
A. A normalized error, £, between the frequency histogram of the transformed series and

the probability density function (pdf) of the corresponding normal distribution is obtained

according to Ang and Tang (1975) as

50



€= ;—(hf }f ) (5.9)

where, I denotes the number of intervals the total range of 67 was divided into, 4, indi-
cates the relative frequency of a certain value of 67°¢, and f; indicates the magnitude of
the pdf evaluated at the same value of 67°. The value of A that leads to the minimum

error, £, is chosen as the optimal parameter.

In this study, the scaling function, s,, is a truncated Fourier series

MS
§5C = %co + 3 [e, cos(@yktAr )+ d, sin(a,keAr)] (5.10)

k=1

where as before At is the length of the sample interval, @, =27/(NAt) is the fundamental
frequency, M and N are the number of terms in the truncated Fourier series and the total
number of sample points of the history, respectively, and ¢, and d, are the discrete
Fourier coefficients. For the limiting case where M, =(N/2-1), s’ =7, while for

M, <(N/2-1), s*¢

#C is an approximation of 67 leading to s, as a suitable scaling func-

tion. The value of M, is found such that 5°° and 67 have a prescribed correlation coef-
ficient of p =0.95. M, is much smaller than (N/2~1), since the variation in variance

has been calculated via an average and is therefore of slowly varying nature.

5.2.3 Random Component Description

The remaining stationary random component, #,, can be represented by an ARMA model
of appropriate order. A vector ARMA model is employed to account for correlations

among components, n(i), of n,. No commonly agreed on approach of model selection for
g P ‘ t yag pp
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vector ARMA models has been found. In this study, therefore, the criterion of model or-
der selection will be identical for both single- and multi-channel case. The selection of
the proper ARMA model is made such that a parsimonious model is chosen according to

Section 3.4.

5.3 Nonparametric Statistics

In order to determine whether a sequence of observations is of random nature, statistical
tests can be performed. Observations can be either individual events, or a common
measure of a collection of events, such as the interval mean, 4., for a given i-th interval
of a history. If no information about the distribution function of the sequence is available,
a nonparametric test is desired because no assumptions regarding distributions are neces-
sary. In nonparametric inference, the methods are based only on the relative occurrence
of an underlying event. Therefore, information or assumptions regarding the underlying
population are not necessary to assess whether a sequence is of random nature or contains

deterministic trends (Gibbons, 1971).

Three nonparametric tests are presented here to determine the stationarity of d, with
respect to the mean value. In general, given a time series of length N, one divides this se-
ries into N, intervals each containing N, points, such that N = N, X N,. The means are
calculated for each interval, u,, where i= (1, 2,....,N ,), and are considered as the se-

quence of observations to be tested for randomness.
These intervals need to be sufficiently long to give reliable estimates for the mean, yet
short enough to be able to detect variations in the mean of the whole record. Further-

more, for proper statistical analysis, it is desirable to treat the estimates of the interval
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means as if they were uncorrelated to each other. No common rule has been established
in the literature as to what this interval length should be. An argument to support the
choice of interval size, however, can be made using inference methods from classical
statistics. To establish the necessary number of data points to estimate the interval mean,

U, a Student's t-test can be used (Miller and Freund, 1977)

S S
X —t —— |S U, S| X+t —— 5.11
( i “lan,- \/N_p] H; ( i Tl \/N_p] ( )

where X, is the estimated interval mean, S, is the square root of the unknown interval
variance, and 7, , _, indicate Student's t-distribution with & level of confidence and
N, —1 degrees of freedom. An expression indicating the relative maximum error in

estimating 4, can be derived as

relative maximum error = r" ;"u" % < (5.12)

For a chosen value of & = 0.9 and an acceptable relative maximum error of 25% in es-
timating (., the required minimum number of sample points is N, =45 leading to the ac-
tual choice of N, =50 for other confidence levels and relative maximum errors see Table

5.2

The first test is based on the variable R, the total number of runs. A single run is de-
fined as successive observations of the interval mean or interval standard deviation below
or above the median and is completed when two succeeding observations are separated by
the median. This is the best known and most general run test. The test is focused on a

single quantity, the median, and gives a general measure of randomness or lack thereof
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without identifying trends or cyclical pattern. Hald (1952) derives the mean and variance
for the expected number of runs for a true random sequence. For the case where the total
number of runs, R,, is larger than twenty, the distribution of R, is approximately normal.
For a sequence of length N,, the expected value and variance for R, then are defined as,

(Hald, 1952)

N, +2
E[R|=ptp = 12 (5.13)

E[(RT—,URT)levar[RT]zaﬁr=%(1— ! j (5.14)

Confidence limits for the expected number of runs can be established. A hypothesis
test is based on the comparison of the observed number of runs, 7, and the theoretically

expected number of runs, £, . Confidence limits at level & are defined as (Hald, 1952)

(”r — Z,,0%, )S M < (”r + 2,20k, ) (5.15)

where z,, is defined such that

0o lxz
1-a/2= je 2> gy (5.16)

Za/2

If the observed number of runs, r,, falls inside the confidence limits, Eq. (5.15), for a
chosen confidence level, usually o = 0.95, the hypothesis of the sequence being random is
accepted, while for the case where 7, falls outside these limits the observed sequence

must be considered deterministic.
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The second run test is based on the variable for the length of the longest run, K. In a
random sequence of length N,, the longest of the runs described above follows the rela-

tion (Hald, 1952)

1 2
N, EK—K+1—K; Kllog,(P(~z,, <Z <z,,)) (5.17)
where
Za/2 —lxz
Plozy,<Z<zy,)= [e? ar (5.18)

~Zg/2

Since Eq. (5.17) cannot be solved directly for K, the test is indirect. The hypothesis
test at confidence level ¢ for the observed longest run requires checking whether the se-
ries is sufficiently long to admit a run of observed length, %, in a random sequence of

length N,. This test is best suited for identifying trends in a sequence.

Finally, tests based on the number of runs up and down, R, ,, provide another
measure of randomness of a sequence of interval means. The magnitude of each
observation is compared with that of the immediately preceding observation. If the next
element is larger, a run up is started, and if smaller, a run down. A decision concerning
randomness then is based on the number of these runs, while the length is not considered.
This test traces the whole sequence of observations relative to each other, in contrast to
the test based on the total number of runs. Therefore, a periodic fluctuation (cyclic
content) of the observed sequence can be detected through the number or runs up and
down. A hypothesis test can be derived for measuring whether the observed number of

runs, 7, significantly deviates from the expected value, u, , for a random sequence.
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The expected value and variance of the number of runs up and down for a random

sequence of length N, are (Hald, 1952)
E[RUD]:IURUD :%(2]\71 _1) (5.19)

B(Rp -, Pl=varlRy]=02 =L (16N,-29) (5.20)

Confidence limits at level o are defined as

(rUD = Z4)20r,, )< Hg,, < (rUD + 2420k, ) (5.21)

Each run test detects a certain form of deviation from the case of a random sequence.
Too few runs, runs of excessive length, or too many runs can be used as statistical criteria
for the rejection of the hypothesis of randomness of the sequence u,. Therefore, all tests
should be considered, and need to be passed successfully, for the sequence d, to be con-

sidered stationary with respect to its mean.
5.4 Ensemble Generation

Successful load modeling for the purpose of realistic fatigue testing asks for an ensemble
of load histories where each realization (history) is representative of the actual loading.
In practice, it is often difficult to obtain sufficient information about the ensemble. It is
common to have only a limited number of representative records for a particular loading
situation. Therefore it is desired, given a single loading, to obtain a large number of reali-
zations which are not identical, but contain variations which have statistical

characteristics identical to the original history.
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The proposed model of Eq. (5.1) allows for an extension from a single observed re-
cord to an ensemble in all its components. The ARMA models employed to account for
the stationary variations of the loads are of stochastic nature. It is not a single time series
that is embodied in a particular set of ARMA parameters, but a random process, which
for each generation yields a different realization with identical stochastic characteristics,

but a different sequence and values of relative extrema.

The ensemble of mean and variance variations can be obtained using a method intro-
duced by Rice (1944). It is shown that a time series, y,, of a random signal can be de-

scribed by its discrete Fourier transform

N-1/2

y, = %go + Y [g, cos(@yktAt —n, )+ b, sin(wyktAt — 7, )] (5.22)
k=1

where g, and A, are Fourier coefficients, @,, At, and N were defined above, and 77, and

7, are two random phase angles distributed uniformly over the interval (0, 27).

This presentation yields an ergodic random process, i.e., a process that is stationary,
such that an average taken over time is identical to an average taken across the ensemble
of histories. Histories with a different variation for each simulation of Eq. (5.22) are ob-
tained, yet the overall characteristics, such as the frequency content and variance, are pre-

served. A stochastic description of the process y, is obtained.

This formulation of a random process can be used to derive an ensemble of mean and
variance variations by modifying the mean description in Eq. (5.2) and the scaling
function in Eq. (5.9) in two ways. First, similarly to Eq. (5.22), random phase angles are

added to each term of Egs. (5.2) and (5.9). This leads to presentations which preserve the
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spectral content, but the sequence of events, i.e. the occurrence of a relative or absolute
maximum, will be different for each simulation. While these records are statistically
identical, it might be desirable to obtain mean and variance variations which will have a
prescribed similarity (correlation) to the deterministic descriptions. This would yield
more realistic load simulations as the sequence of major events, such as relative extrema,

can be preserved to any desired degree.

This objective leads to a second modification of Egs. (5.2) and (5.9). The prescribed
correlation between deterministic description and the ensemble is obtained through limit-
ing the number of terms which carry a random phase angle in Eq. (5.22). Instead of 7,

and 7, being random phase angles for all &, 77, and 7, will be restricted such that

U for ke (N,+1,M)
n,t, = (5.23)
0 for ke (0,N,)
and the ensemble description becomes
v, 1 d .
vt = Ego + z [gk cos(@,ktAt — 1, )+ b, sin(wyktAt — 7, )] (5.24)
k=1

where N, indicates the number of terms with zero phase angles and U indicates the uni-

form distribution defined on the interval (0, 27).

From a strict theoretical standpoint, the random process of Eq. (5.24) with the defini-
tion of 77, and 7, of Eq. (5.23) yields a non-ergodic process. This is due to the fact that
the process contains deterministic components, i.e., terms with zero phase angles. How-
ever, the proposed method of using a limited number of random phase angles conserves

the frequency content of the deterministic variation.
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5.4.1 Ensemble Mean

Given the deterministic mean description of Eq. (5.2) and the derivation of an ensemble

of Section 5.4, the ensemble of mean variations becomes

u,
m = %ao + [a, cos(wyktAt — ¢z, ) + b, sin(awktAt — B, )] (5.25)

k=1

with the random phase angles such that

U for ke(Ng”+1,Mm)

5.26
0 for ke (O, N;”) (520

o, B, :{

In order to measure the closeness between the deterministic description, m, and a

simulated mean m" , the correlation coefficient, p"* , is obtained.
5.4.2 Ensemble Variance

An ensemble of variance variations can be derived in an analogous manner as the one for

the mean description. The Fourier series to describe the scaling function, s,, will be aug-

19

mented by random phase angles, which in turn will be restricted according to the desired

correlations between deterministic and stochastic scaling functions.

Given the Box-Cox transformation of the deterministic scaling function of Eq. (5.9)
and the derivation of an ensemble of Section 5.4, the ensemble of Box-Cox transformed

scaling functions becomes

M.\'
sVt = %Co + Y [c, cos(@yktAt — y, )+ d, sin(wyktAt - 6, )] (5.27)

k=1
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with the random phase angles such that

{U for ke(N;+1,MS) (5.28)

S =
i O 0 for ke(O,Ng)

As for the mean ensemble the closeness between the deterministic description, s, and

a simulated scaling function, s*, is measured by their respective correlation coefficient,

NS
psz'
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CHAPTER 6. STUDIES OF UNTAXIAL LOADINGS

Three fatigue loading histories which represent data collected in field experiments were
provided by the sponsor and are investigated. These histories are strain gauge measure-
ments taken on a front suspension component. A fourth history was obtained by
removing the variation in variance of one of these histories, yielding a history stationary
with respect to variance, but nonstationary with respect to its mean. According to earlier
stated assumptions, these records are considered to represent local strain data, collected at
a critical location such as a notch, and, moreover, they are assumed to have been sampled
at one point per second. Moreover, all records have been normalized without loss of
generality such that their overall mean value is zero and their dimensionless root mean
square (RMS) value is equal to unity. Basic statistics of original and reconstructed
records are shown in Table 6.1. Some of these loadings exhibit a beginning that does not
contain much variation. This can be explained by the fact that the vehicle started from
rest and loads are consequently small. All fatigue life calculations are based on the mate-

rial properties of SAE 1045 steel, stated in Table 6.2.

6.1 Stationary Mean and Variance

For the purpose of life analysis, a typical block of stationary zero-mean, constant variance

strain-gauge data (22,592 observations) is chosen to represent the random fatigue load

61



Table 6.1.

Statistics of original loadings and respective reconstructions.

Stationary Mean and Variance Nonstationary Mean Nonstationary Variance Nonstat. Mean and Variance
Original  |Reconstruction|  Original  |Reconstruction|  Original ~ |Reconstruction|  Original  |Reconstruction
Mean 0.0 9.653E-5| 0.0 —2.647E-3| 0.0 - 0.017 0.0 —0.013
Variance 1.0 1.014 1.0 0.985 1.0 1.028 1.0 0.985
Skewness| — 0.131 — 7.583E-3| — 0.307 —0.198 —0.141 —0.003 —0.361 —0.232
Minimum | — 4.784 —4.132 —3.785 — 3.884 —6.076 —7.096 —3.931 —3.253
Maximum | 3.956 4.187 2.866 3.052 6.064 7.927 2.754 3.292
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Table 6.2. Material properties for SAE 1045 steel, Kurath et al. (1989).

Modulus of Elasticity, E 202000 MPa 29297  ksi
Yield Strength, o 380 MPa 55.1 Kksi
Ultimate Strength, o, 621 MPa 90.3 ksi
Fatigue Strength Coefficient, o} 948 MPa 138  ksi
Cyclic Strength Coefficient, H’ 1258 MPa 182  ksi
Cyclic Strain Hardening Exponent, n’ 0.208
Fatigue Strength Exponent, b —0.092
Fatigue Ductility Coefficient, €/ 0.260
Fatigue Ductility Exponent, c —0.445
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history in this study. A portion of this load history is shown in Fig. 6.1, and its corre-

sponding power spectral density is plotted in Fig. 6.2.

Various orders of ARMA models are employed for the reconstruction of an
equivalent history and are compared for the best model. Table 6.3 gives the
autoregressive and moving average parameters, ¢,; i=1, 2, ..., p, and 6,; i=1, 2, ..., g, for
each ARMA model together with the variance of the white noise, 0. It is observed that
the variance of the white noise decreases rapidly with increasing model order, indicating a
better fit of the model to the data. The values of ARMA parameters for different models,
however, do not exhibit any distinct pattern. Moreover, Table 6.4 shows the correlation
coefficient between the power spectral density for the original record and power spectral
densities obtained from the closed form presentation of Eq. (3.7) for various ARMA
models. It can be seen, that, with increasing model order, the variance of the white noise,
o?, and the correlation coefficient between the spectra does not monotonically decrease.
This is due to the fact that increasing the model order can lead to overfitting, i.e.

estimating of higher order models that in fact give a poorer fit than a lower order model.

Power spectral densities for ARMA(1,0), ARMA(2,1) and ARMA(3,1) models are
shown in Fig. 6.2. It is noted that ARMA(0,0) is a stationary random process with a nor-
mally and independently distributed variable, i.e. white noise, having a constant power
spectral density with a unit area. It is obvious that the lower order ARMA models,
ARMA(0,0), ARMA(1,0), and ARMA(2,1), are inadequate in describing the stochastic
characteristics of the original loading. This is due to the fact that these models do not in-
clude a sufficient number of parameters to reflect the correlation structure of the original

record. The power spectral density for the ARMA(1,0) model is a monotonically decreas-
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Figure 6.1. Time series plots for portion of (a) original history, (b) ARMA(0,0), (c)
ARMA(1,0), (d) ARMA(2,0), (¢) ARMA(2,1), and (f) ARMA(3,1) re-
constructions - stationary case.
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Figure 6.2. Power spectral densities for original and selected ARMA reconstructed
histories - stationary case.
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Table 6.3. ARMA parameters and variance of white noise input for selected ARMA models - stationary case.
ARMA(p,q) | (0,0) (1,0) (2,0) (2,1) (3,0) (3,1) (4,0) (5,0) (5,4) (6,0) 8,0) (10,0
O;i=1 0836 1596 1548 2226 1.927 2495 2548 3327 2625 2639 2703

2 0909 0875 -2014 -1540 -2.799 -3.031 -4885 -3.349 -3405 -3.630
3 -0.692 0422 1559 2006 3.997 2706 2854 3.283
4 -0.390 -0.806 -1.796 -1.776 -2.096 -2.684
S 0172 0351 0950 1462 2147
6 -0.297 -0.809 -1.550
7 0.283  1.025
8 -0.089 -0.652
9 0.308
10 -0.072
0,;i=1 -0.873 -0.774 0.721
2 0.190
3 -0.577
4 0.200
6> 1.000 03010 0.0519 0.0232 0.0271 0.0198 0.0230 0.0228 0.0274 0.0202 0.0206 0.0192
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Table 6.4.  Correlation coefficient of power spectra, p\”*, for selected ARMA(p,q)
models, where the bold number indicates the minimum order model for a
given correlation value - stationary case.

q
p 0 1 2 3 4 5 6
1 0.22
2 0.84 | 0.87

3 | 0.74]092]0.77

4 1094094090 0.83

5 (091091090 0.86|0.95

6 ||087(084|084 (08 |0.90]0.95

7 (1093|093 |/091/088|094|0.95]|0.95
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ing function that overestimates and underestimates the distribution of the power in the
low and high frequency ranges, respectively. For the higher order ARMA models, the
resulting spectral densities are similar to that of the original loading history, which is
characterized by having most of its power concentrated around the critical frequency of

f =0.09Hz.

To compare models with respect to fatigue relevant characteristics, the distributions
of rainflow cycles and the predicted component fatigue lives are investigated. In order to
eliminate any bias toward any particular load history, the rainflow cycles and the compo-
nent fatigue lives corresponding to each ARMA model are taken as the ensemble average

of one hundred independently reconstructed histories.

For the purpose of rainflow cycle counting, the maximum range for the normalized
original and ARMA reconstructed histories is set equal to 10, extending from -5 to 5.
Such a range is chosen to be large enough so that the probability of it being exceeded by
the reconstructed data is almost zero. This range is then divided into 32 equal class inter-
vals of width 0.3125. Figure 6.3 shows the range-mean histograms of rainflow cycles for
the original history and for the reconstructed histories by ARMA(0,0), ARMA(1,0),
ARMA(2,1), and ARMA(3,1) models. The distributions of rainflow range mean histo-
grams for the lower order models such as ARMA(0,0) and ARMA(1,0) are shown to be
substantially different from that of the original history. Because the correlation among
the consecutive data points is relatively low, these two lower order models describe
sequences of peaks and valleys that are interrupted by only a small number of
intermediate points. As a result, a much larger number of rainflow cycles with a smaller

range is formed. Furthermore, it is also observed that the number of rainflow cycles with larger ranges is over-
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estimated by the ARMA(0,0) model while it is underestimated by the ARMA(1,0) model.
The distributions of rainflow cycles for reconstructions corresponding to the higher order
ARMA models are found to be similar to that of the original history. However, the distri-
bution for the original history is irregular, whereas those for the ARMA reconstructions

are relatively smooth due to averaging the one hundred sample histories.

In the following analysis, the variations of fatigue life as a function of RMS strain
level, &,,,, are considered, the so called strain life curve. Consequently, the strain histo-
ries corresponding to various RMS levels are required. Because the original loading is of
unit RMS value, this can be accomplished by simply multiplying the normalized history
with the desired RMS value. Strain life curves for original loading and average values of

one hundred ARMA reconstructions are shown in Fig. 6.4.

For low cycle fatigue, the component life for ARMA(3,1) reconstructed history is
shown to be in good agreement with that for the original history. The fatigue life due to
ARMA(0,0) reconstructed histories is the shortest. This is because the ARMA(0,0)
model does not only overestimate the rainflow cycles with a smaller range but also those
with an intermediate and larger ranges. In spite of the result shown earlier which
indicates that the largest number of rainflow cycles is formed by the ARM(1,0)
reconstructed histories, the longest fatigue life is predicted. This can be explained by the
fact that the distribution of the resulting cycles is biased toward those with a smaller
range for which the resulting damage is insignificant. Higher order models, however,
approximate the fatigue life better. It is noted that strain life curves for ARMA(2,0) and
ARMA(S,4) overlap with the ones for ARMA(2,1) and ARMA(3,1), respectively.
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Figure 6.4. RMS strain level, &;,,, versus blocks to failure, N, for original and selected ARMA reconstructed histories -
stationary case.
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For high cycle fatigue, the calculations indicate that the predicted fatigue lives for the
original and for ARMA reconstructed records are in good agreement. When the compo-
nent life becomes relatively large, i.e. N, >10° blocks, all the reconstructed histories re-
sult in longer predicted life than that for the original loading. For these particular RMS
stain levels, the damage is mainly the result of those hysteresis loops with the largest
ranges. It is observed that all the proposed ARMA models slightly underestimate the

number of rainflow cycles with such ranges.

The damage histograms for the original and for ARMA(0,0), ARMA(1,0), and
ARMA(3,1) reconstructed histories are shown in Fig. 6.5 for the RMS strain level
Erns = 0.1% . At this RMS strain level, the rainflow cycles with a small range contribute
an insignificant percentage of damage. As a result, the shortest and longest fatigue lives
are predicted when the expected load history is described by ARMA(0,0) and
ARMA(1,0) models, respectively.

According to the selection criterion outlined in Section 3.4, ARMA models of mini-
mum order whose power spectra have a specific correlation value, p¥**, to the spectrum
of the original are considered for further analysis with respect to fatigue life. Models with
correlations of p7? greater or equal than 0.8, 0.85, 0.9, and 0.95 are sought. The re-
spective minimum order models can be read from Table 6.4 and are ARMA(2,0) with
p” =084, ARMA(2,1) with p{"" =087, ARMA(3,l1) with p" =092, and
ARMA(5,4) with p0"* =0.95, respectively. It can also be seen from Table 6.4 that in-

creasing the model order beyond ARMA(5,4) does not lead to better fitting models.

The model of lowest order for which the strain life curve falls within the bounds of life
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of the original is the ARMA(3,1) model, shown in Fig. 6.6. Therefore, according to the
criterion of closeness with respect to fatigue life, the ARMA(3,1) model is chosen to be
the most concise model that matches the fatigue life of the original loading with appropri-

ate accuracy.

The application of random load history modeling for numerical analysis, such as
Monte Carlo studies, and laboratory fatigue testing, generally requires a large number of
load reconstructions. As a result, it is desirable that the proposed model has a high degree
of consistency in terms of reproducing load histories which have identical statistical
properties to the original. In other words, the variations of fatigue life of the same
component subjected to various reconstructed load histories should be minimal.
Statistical variations of the component fatigue life based on an ensemble of one hundred
independently reconstructed ARMA(3,1) histories are plotted in Fig. 6.7 as a function of
the RMS strain level, £,,,,. Shown are the mean average life, N, the mean lower bound
life, N ~, and the mean upper bound life, N . Furthermore, a band formed by the lines
N} =30 y: and N +30 yu» Where 0, and o, are the standard deviations of the lower
bound and upper bound lives, respectively, is also given for measuring the degree of
dispersion of the data. It is noted that the total probability that a given point to be within
plus and minus three standard deviations from the mean value is approximately 99.7%.
Because the resulting band is relatively narrow, only slight variation in the predicted
fatigue life is to be expected. The variation reflects the fact that the loading history is of
stochastic nature. In the subsequent studies, rainflow and damage histograms will be
obtained for only one reconstruction, as the variability between reconstructions is small

for histories of reasonable length.
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Figure 6.6. RMS strain level, &,,,, versus blocks to failure, N, for original and selected ARMA reconstructed histories -
stationary case.
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Figure 6.7.  Statistical variations of fatigue life resulting from an ensemble of 100 independently reconstructed ARMA(3,1)
histories - stationary case.
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6.1.1 Experimental Verification

Juneja (1992) reported the results of an experimental verification of the proposed load
modeling method. Unnotched axial test specimens were made of SAE 1045 steel from
the same lot of material, where the material constants, Table 6.1, were the same as used in
the life calculations from the previous section. The specimen were subjected to the
original loading history at five different RMS strain levels, and similarly to three
reconstructions, namely ARMA(0,0), ARMA(1,0), and ARMA(3,1), where these

histories are shown in Fig. 6.1.

The number of blocks to failure, N,, are shown for each test in Fig. 6.8. The
ARMA(0,0) reconstructed history gave lives shorter than those for the original history,
and the ARMA(1,0) reconstruction gave longer lives. The ARMA(3,1) reconstruction
lives were closest to those for the original history at all five strain levels, being slightly
longer but within a factor of two. The trends in life for the various reconstructions was in
agreement with the calculated life of the previous section. However, the actual lives were
shorter than predicted, especially at the lower RMS strain levels. A possible explanation
for this is that cycles at the intermediate and lower levels within a given strain history
often cause more fatigue damage than expected due to an interaction effect with the most
sever cycles. Also, the material properties of the provided specimen may have deviated
from the reported values as they were not confirmed through tests. Finally, a variation in
material properties within the lot of steel bar provided is a possible cause for the

deviation of prediction and test results.

The most significant result obtained, however, is that the ARMA(3,1) model and the
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Figure 6.8. RMS strain level, &,,, versus blocks to failure, N,, for unnotched axial test specimen of SAE 1045 steel sub-
jected to the original and three ARMA reconstructed histories - stationary case. Calculated lives from Fig. 6.4.
are also shown as solid lines.
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original loading agreed reasonably with respect to fatigue life.

6.2 Nonstationary Mean

A typical history of nonstationary strain gauge data is chosen as the random fatigue load
history in this study, Fig. 6.9a, where a variation in variance was removed prior to this
study. This history, containing 10240 points, constitutes one block. Its power spectral

density is shown in Fig. 6.10.

According to the employed model of Eq. (5.1), the history is decomposed into its two
components, m, and n,, where it is assumed that the scaling function, s,, is constant. In
order to model the variation of the mean, m,, in a deterministic way various Fourier series
with increasing numbers of terms are formed, giving the tentative mean descriptions. The
difference, n,, of the original record and each mean description is obtained. These differ-
ences are then analyzed for deviations from being a zero-mean process. The best mean
description is chosen as the one that renders #, stationary using the Fourier series with the

least number of terms.

In order to analyze the mean-removed record, n,, it is divided into N, intervals each
of which contains, according to Section 5.3, N, =50 points. This leads to N, =204
intervals, for each of which the interval mean is determined. As 10240 cannot be evenly

divided by 50, the first and last 20 points in the series are ignored for the run tests.

Run tests based on the total number of runs, the number of runs up and down, and the

length of the longest run, are performed on the sequence of interval means calculated from

80



4.00

0.00

-4.00

4.00

0.00

-4.00

4.00

0.00

-4.00

4.00

0.00

-4.00

4.00

0.00

-4.00 T I | |
0 2048 4096 | 6144 8192 10240

Figure 6.9. Time series plots for (a) original history, (b) deterministic mean
representation with M, =35, (c) stationary series, (d) ARMA(5,0) model
simulation, and (e) reconstruction - nonstationary mean case.
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Figure 6.10. Power spectral density for original history and a history reconstructed with
M, =35 and ARMA(S,0) - nonstationary mean case.
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n,. This assures that a variety of deviations from the expected random behavior of this

e

sequence can be detected.

Confidence intervals for run tests at levels =090, =095, and o =098 are
shown in Table 6.5, where a =0.95 is chosen as the level at which run tests will be
performed. For the case where N, =204, the 95% (& =0.95) confidence limits for the
total number of runs are (89 <My <1 16), while the number of runs up and down covers
the range (123 <y, <147). The length of the longest admissible run, according to

Eq.(5.17) for a random sequence of length 204, is K=6.

The only value for which all run tests are passed is M, =35. Therefore, a total num-
ber of M, =35 Fourier series coefficients is deemed appropriate for a sufficient mean de-
scription to render the remaining signal stationary with respect to its mean value. See
also Fig. 6.9b for the deterministic mean model, m,, and Fig. 6.9c, for the mean removed

record, n,, and Fig. 6.11 for the power spectral density of the stationary series.

The stationary sequence will be presented by an ARMA model. Parameters for a
number of ARMA models are estimated and the correlation coefficients between power
spectra of these ARMA models and the spectrum of the stationary series are calculated,
and are shown in Table 6.6. Seeking models which have correlations of p{"? greater or
equal than 0.8, 0.85, 0.9, and 0.95 leads to the following choices of respective minimum
order models: ARMA(5,0), ARMA(S,2), ARMA(9,0), and ARMA(10,0). Power spectral
densities for ARMA(5,0) and ARMA(10,0) are shown in Fig. 6.11. The area under the
PSD of both ARMA models is approximately the same as the area under the PSD of the

stationary series. However, the peaks of the stationary series are much better modeled by
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Table 6.5.  Results of run tests for different values of M, for a=0.95 (italics =
failure of test, bold passed all tests ) - nonstationary mean case.

N, =204
o =090] 91<r.<114 |125<r,,<145 k<5
o =098| 86<r.<119 |121<r,,<149 k<6
o =0.95| 89<r.<116 |123<r,,<147 k<6
M, Iy Mo k
5 35 102 8
10 67 100 8
15 77 112 6
20 77 108 7
25 91 108 5
30 99 114 4
35 109 132 4
40 104 116 4
45 130 138 5
50 141 146 3
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Figure 6.11. Power spectral density for the stationary series and two ARMA models,

where for ARMA(5,0) p0” =081 and for ARMA(10,0) p{*” =096 -
nonstationary mean case.
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Table 6.6.  Correlation coefficient of power spectra, p\”?, for selected ARMA(p,q)
models, where the bold number indicates the minimum order model for a
given correlation value - nonstationary mean case.

p ! 0 1 2 3 4 5 6 7 8 9
1 0.52
2 0.50 | 0.57

3 0.59 | 0.64 | 0.70

4 0.76 | 0.77 | 0.82 | 0.83

5 0.81| 0.81 | 0.85| 0.85 | 0.84

6 0.830.83|10.84|0.84|0.85|0.85

7 0.8110.81|0.82|0.83|0.84| 0.84| 0.83

81 [ 0.71/0.70|0.76 | 0.76 | 0.83 | 0.83 | 0.83 | 0.86

9 0.90 0.92|095|095|0.97| 097 |0.98| 0.98 | 0.98

10 | 0.96 | 0.96 | 0.97 | 0.96 | 0.98 | 0.98 | 0.98 | 0.98 | 0.96 | 0.97

11 | 093094 |0.95|0.95|0.97|0.98|0.97|0.97 | 0.96 | 0.96

12 | 0.93(0.93(0.94|0.94|0.97|0.97|0.96|0.97 | 0.97 | 0.97
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the ARMA(10,0) model than by the ARMA(5,0) model.

Reconstructions are formed for all of these ARMA models and added to the determi-
nistic mean description. Strain life curves are obtained for the original loading, where the
bounded life calculation was performed, and for various ARMA reconstructions, Fig.
6.12, where 64 independent reconstructions were performed and averaged to eliminate
any bias introduced by a particular reconstruction. Note that strain life curves for recon-
structions of ARMA(5,0), ARMA(5,2), ARMA(9,0), and ARMA(10,0) overlap, there-
fore, the lowest order model, ARMA(5,0), is deemed appropriate for load reconstruction.
Strain life curves are also shown for ARMA(0,0) and ARMA(1,0), where it is noted that
they constitute, as in Section 6.1, the limiting cases of all ARMA reconstructions that
were studied. ARMA(0,0) leads to the shortest life, while ARMA(1,0) leads to the long-
est life predicted. Moreover, it is noted that ARMA(0,0) and ARMA(1,0) are closer to
the bounds of the original than it is the case of the stationary loading in Section 6.1. This
can be explained by the fact that, for this case, where the mean variation varies apprecia-
bly, the stationary random component's contribution to fatigue life is less than that for the
case of a purely stationary loading. In other words, any bias introduced by an inappropri-
ate ARMA model influences the reconstruction less when a deterministic mean variation

is present.

The complete reconstruction, using the stationary record obtained from the selected
ARMA(5,0) model shown in Fig. 6.9d, and using the deterministic mean representation,
is shown in Fig. 6.9e. To demonstrate the consistency of the reconstruction, Fig. 6.13
shows five independently simulated records. The power spectral density of the recon-

structed history is shown in Fig. 6.10, where it should be noted that the PSD is shown on
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Figure 6.12. RMS strain level, &, versus blocks to failure, N, for original and selected ARMA reconstructed histories,

where M, =35 - nonstationary mean case.
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Figure 6.13. Time series plots for original history and reconstructions with
deterministic mean, M, =35, where different simulations of the
ARMA(5,0) model are used - nonstationary mean case.
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a logarithmic scale, and the overall agreement is actually very close. Finally, for visual
comparison, the rainflow and damage histograms are obtained and are shown in Figs.
6.14-6.15. The overall agreement is good; both the large number of small cycles and the

small number of large cycles being well approximated.

In order to measure the correlation between the deterministic mean, m,, and a simu-
lated mean, th 7 the correlation coefficient, pr? , is calculated. To obtain a reliable esti-
mate, 64 simulations are performed for each value of N, (Eq. 5.26) and averaged.
Figure 6.16 shows these results, where it is seen that the correlations remain large for a
range of zero phase angles between 10 and 35 and drop sharply to zero when the number
of zero phase angles becomes smaller than 10. Figures 6.17 a-e show the deterministic
mean variation and a set of four mean variations of different correlation with the determi-
nistic mean. These records were obtained for correlation values of
Y7 =(095, 080, 0.58) corresponding to values for N2 =(20,7,4). Finally, a random
phase angle is added to each term, N, =0, so that the deterministic mean and simulated
mean are uncorrelated. Figures 6.17f-g show these simulations, which are drastically dif-
ferent from the original. This method, therefore, allows one to obtain mean simulations

with any desired closeness to the deterministic mean.

To measure the variability in fatigue life, 64 simulations are performed where both
mean and random content were generated independently. The fatigue life is calculated
for each simulation to obtain the mean, standard deviation, and coefficient of variation
(ratio of standard deviation and mean) of fatigue life. The variability of fatigue life, ex-

Ny

pressed through the coefficient of variation, for different correlation values, p,”, is

shown in Fig. 6.18.
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Figure 6.14. Rainflow histograms for (a) original and (b) record reconstructed with
M =35 and ARMA(5,0) - nonstationary mean case.
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Figure 6.15. Damage histograms for (a) original and (b) record reconstructed, with
M_ =35 and ARMAC(5,0), where &,,, = 0.1% - nonstationary mean case.
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Figure 6.16. Correlation, prZ, between deterministic and ensemble mean versus the
number of zero phase shifts in ensemble mean, N, - nonstationary mean
case.
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Time series plots for (a) deterministic mean description with M, =35 and
mean representations correlated to the deterministic mean, with
N7 =095 for NJ =20, pY* =080 for N =7, p? =058 for NJ =4,

m
and p"” =0 for N} =0 - nonstationary mean case.
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Figure 6.18. Coefficient of variation of fatigue life, J, , versus RMS strain, &g, for
mean realizations of various correlations to deterministic mean, p)* -
nonstationary mean case.
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For the case of smaller values of py the variability in life is larger due to the contri-
bution of the larger variations in mean. For the limiting case of ng =1, i.e. where the de-
terministic mean is used, the variability is smallest and entirely caused by differences in
ARMA reconstructions. The variability in life for all cases of p* is larger for smaller
values of RMS strain level. This is due to the fact that, as the strain level decreases, the
large number of rainflow cycles with small range contribute less to the overall damage.
Therefore, only a few large range cycles contribute to fatigue damage, consequently the

variability is larger.

6.3 Nonstationary Variance

A typical history of nonstationary strain gauge data is chosen as the random fatigue load
history in this study, Fig. 6.19a. This history, containing 10240 points, constitutes one

block. Its power spectral density is shown in Fig. 6.20.

According to the employed model of Eq. (5.1), the history is decomposed into its two
components, the scaling function, s,, and the stationary random part, n,, where it is as-
sumed that the mean, m,, is constant. To model the scaling function, s,, an estimate of
the standard deviation of the time series, 0,, is obtained according to Eq. (5.4), and
shown in Fig. 19b. In order to concisely represent &, the Box-Cox transformation is
performed. Figure 6.21 shows the skewness coefficient of the transformed series, @, for a
range of the transformation parameter, A, where it can be seen that two values of A,
namely 4 =-0.05 and 4 =0.275, lead to symmetrically distributed series. In Fig. 6.22 the
corresponding frequency histograms are shown along with their equivalent Gaussian den-

sity functions. The normalized errors between the histogram and density function, calcu-
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Figure 6.19. Time series plots for (a) original record, (b) estimated standard deviation,
&, (¢) Box-Cox transform of &,, 67, (d) Fourier series approximation to
6’ with M_ =50, s’°, and (e) scaling function s, - nonstationary
variance case.
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Figure 6.20. Power spectral density for the original history and a history reconstructed
with M =50 and ARMA(6,0) - nonstationary variance case.
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curve) of corresponding normal distribution for two values of transformation parameter A, where £ denotes the
normalized error between the histogram and the probability density function - nonstationary variance case.
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lated according to Eq. (5.9), are £=7.71 for 4 =-0.05 and £=0.63 for A =0275. The
optimal transformation parameter, therefore, is 4 =0.275, and the transformed variable,
67¢, is shown in Fig. 6.19c. A number of Fourier series with an increasing number of
terms are formed according to Eq. (5.10), giving the tentative scaling functions. The se-
ries, s”¢, with the fewest number of terms that is correlated at 95% to &7 has M, =50
terms and is shown in Fig. 6.19d. The inverse Box-Cox transformation of s°, s,, is the
scaling function used to render the original series stationary with respect to variance and
shown in Fig. 6.19e. This stationary series, the quotient of x, and s,, is shown in Fig.

6.23a.

The stationary series will be presented by an ARMA model. Parameters for a number
of ARMA models are estimated and the correlation coefficients between power spectra of
these ARMA models and the spectrum of the stationary series are calculated and are
shown in Table 6.7. Seeking models which have correlations of p{"? greater or equal
than 0.8, 0.85, 0.9, and 0.95 leads to the following choices of respective minimum order
models: ARMA(2,0), ARMA(2,1), and ARMA(6,0). Power spectral densities of the sta-
tionary series, ARMA(2,0), and ARMA(6,0) are shown in Fig. 6.24. The area under the
PSD of both ARMA models is approximately the same as the area under the PSD of the
stationary series. However, the peak of the stationary series is closer approximated by the
ARMA(2,0) than by the ARMA(6,0) model. In the very low frequency range, however,
the ARMA(6,0) approximates the PSD of the stationary series better. Moreover, the area
under the PSD of the stationary series is about the same as the are under the PSD for the
original loading. This can be explained by the fact that the original series was of unit
variance, while the stationary series was obtained by dividing the original series by an

estimate of it's standard deviation. Such division leads by definition to a series of unit variance,

101



6.00

0.00 -

-6.00

6.00

0.00

-6.00

10.00

0.00

-10.00 | | | |
0 2048 4096 , 6144 8192 10240

Figure 6.23. Time series plots for (a) stationary series, (b) ARMA(6,0) model simula-
tion, and (c¢) reconstruction - nonstationary variance case.
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Table 6.7.  Correlation coefficient of power spectra, p\”?’, for selected ARMA(p,q)
models, where the bold number indicates the minimum order model for a
given correlation value - nonstationary variance case.

/ 0 1 2 3 4 5 6 7
p
1 0.08
2 0.84 | 0.86

3 | 0.84)|0.86|0.88

4 |10.89|0.88|0.87|0.85

5 | 0.88]|0.89|0.90|0.89]|0.97

6 0.95| 0.95|0.96 | 0.93 | 0.96 | 0.97

7 0.9410.95| 095|093 |0.96|0.98 | 0.99

8 0.971096| 096 | 095|0.97|0.98|0.99]| 0.99
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Figure 6.24. Power spectral density for the stationary series and two ARMA models,
where for ARMA(2,0) p{” =084 and for ARMA(6,0) p\™” =0.95 - non-
stationary variance case.
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therefore, the areas under the respective power spectral densties have to be identical.

Recongructions are formed for dl of these ARMA modds and multiplied by the de-
terminigtic scaling function.  Strain life curves are obtained for the origind loading, where the
bounded life calculation is performed, and for various ARMA recongtructions, Fig. 6.25, where
64 independent reconstructions were performed and averaged to eliminate any bias introduced
by a particular recongtruction. Note that strain life curves for the ARMA(2,0), ARMA(2,1),
and ARMA(6,0) recondructions are very close, but only the highest order modd, i.e.
ARMA(6,0) modd is deemed appropriate asits strain life curve fdls, at least partidly, insde the
bounds of the origind. As before drain life curves are dso shown for ARMA(0,0) and
ARMA(1,0), the limiting cases. Here, it is noted that ARMA(0,0) and ARMA(L,0) life
predictions are about as far from the bounds of the origina than it is the case of the Sationary
loading in Section 6.1. As the mean variation is zero, it is the Sationary random component
that governs fatigue life. The scaling function, <,, determines the variance of the process, but the
ARMA mode determines the corrdation, and therefore rainflow cycles, of the series.
Therefore, any bias introduced by an ingppropriate ARMA mode influences the recongtruction

asit wasthe casein Section 6.1.

A complete recongruction, using the dationary record obtained from the sdected
ARMA(6,0) modd, shown in Fig. 6.23b, isshown in Fig. 6.23c. The power spectra density of
the recongtructed higtory is shown in Fig. 6.20. Findly, for visud comparison, the rainflow and
damage histograms are obtained and are shown in Figs. 6.26-6.27. The overdl agreement is
good; hoth the large number of smal cydes and the smal number of large cycles being well

approximated. To demondrate the condstency of the  recondruc-
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Figure 6.25. RMS strain level, &, versus blocks to failure, N, for the original and reconstructed history with ARMA(6,0)
and M, =50- nonstationary variance case.
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Figure 6.26. Rainflow histograms for (a) original and (b) reconstruction with M, = 50
and ARMA(6,0) - nonstationary variance case.
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Figure 6.27. Damage histograms for (a) original and (b) reconstruction with M, =50
and ARMA(6,0), where &, = 0.1% - nonstationary variance case.
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tion, Fig. 6.28 shows five independently simulated records.

6.4 Nonstationary Mean and Variance

A typical history of nonstationary strain gauge data is chosen as the random fatigue load
history in this study, Fig. 6.29a, where it is noted that this is the history used in Section
6.2, but no manipulation prior to this study was performed. This history, containing

10240 points, constitutes one block. Its power spectral density is shown in Fig. 6.30.

According to the employed model of Eq. (5.1), the history is decomposed into its
three components, the mean component, m,, the scaling function, s,, and the stationary
random part, n,. In order to model the variation of the mean in a deterministic way, m,,
various Fourier series with increasing numbers of terms are formed, giving the tentative
mean descriptions. The difference, #, -s,, of the original record, x,, and each mean de-
scription, m,, is obtained. These differences are then analyzed for deviations from being a

zero-mean process. The best mean description is chosen as the one that renders 7, - s, sta-

tionary with respect to its mean, using the Fourier series with the least number of terms.

In order to analyze the mean-removed record, n, -s,, it is divided into N, intervals
each of which contains, according to Section 5.3, N, =50 points. This leads to
N, =204 intervals, for each of which the interval mean is determined. As 10240 can not
be evenly divided by 50, the first and last 20 points in the series are ignored for the run

tests.

Run tests based on the total number of runs, the number of runs up and down, and the
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Figure 6.28. Time series plots for original history and reconstructions with the
deterministic scaling function, M =50, where different simulations of the
ARMA(6,0) model are used - nonstationary variance case.
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Figure 6.29. Time series plots for (a) original history, (b) deterministic mean with
M, =41, (c) mean-removed series, (d) estimated standard deviation, &,
(e) Box-Cox transform of &,, 6°¢ - nonstationary mean and variance.
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Figure 6.30. Power spectral density for the original history and a history reconstructed

with M, =41, M =70, and ARMA(8,0) - nonstationary mean and vari-
ance case.
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length of the longest run, are performed on the sequence of interval means caculated from
n:s. This assures thet a variety of deviations from the expected random behavior of this

sequence can be detected.

For the case where N, = 204, the 95% (a = 0.95) confidence limits for the total number
of runs are (89< s <116), while the number of runs up and down covers the range
(123<m,, <147). The length of the longest admissible run, according to Eq, (5.17) for a

random sequence of length 204, is K=6.

Table 6.8 shows the results of these run tests. There is no vaue for which dl run tests are
passed. However, for M, =41 the totd number of runs, r;, iswithin the alowable range and
the number or runs up and down, r,,5, is only dightly outside the alowable range. Therefore, a
total number of M, =41 Fourier series coefficients is deemed appropriate for asufficient mean
description to render the remaining signd approximately stationary with respect to its mean
value. See dso Fig. 6.30b for the deterministic mean modd, m,, and Fig. 6.30c, for the mean

removed record, n,: <,

In order to model the scaling function, <, an estimate of the standard deviation, s ,, of the
time series is obtained according to Eq. (5.4), and shown in Fig. 6.30d. In order to concisaly
represent S, the Box-Cox transformation is performed, where | =0403 is the optimd
transformation parameter, and the transformed variable, s {°, is shown in Fig. 6.30e. A
number of Fourier series with increasing number of terms are formed according to Eq. (5.9),
giving the tentative scaling functions. The series, s°¢, with the fewest number of terms that is
correlated a 95% to s °° has M, = 70 terms and is shown in Fig. 6.31a. The inverse Box-
Cox trandformation of s°¢, g, is the sding function used to ren
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Table 6.8.  Results of run tests for different values of M, for o =095 (italics =

failure of test, bold accepted as stationary) - nonstationary mean and
variance case.

N, =204

o =090] 91<r.<114 |125<r,,<145 k<5

o =098| 86<r.<119 |121<r,,<149 k<6

o =0.95| 89<r.<116 |123<r,,<147 k<6
M, Iy Mo k
20 77 108 6
30 103 118 4
40 109 116 4
41 108 118 5
42 122 134 4
50 143 142 3
60 147 150 3
70 157 162 3
80 162 166 4
90 156 166 3
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Figure 6.31. Time series plots for (a) Fourier series fit to &7 with M, =70, s°°, (b)
scaling function s,, (c) stationary series, (d) ARMA(8,0) model simulation,
and (e) reconstruction - nonstationary mean and variance case.
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der the mean-removed series stationary with respect to variance and shown in Fig. 6.31b. This

stationary series, the quotientof n,: s and s, isshownin Fg. 6.31c.

The stationary series will be presented by an ARMA modd. Parameters for a number of
ARMA modds are estimated, and the correlation coefficient between power spectra of these
ARMA models and the spectrum of the stationary series is caculated, Table 6.9. Seeking
models which have corrdations of r (*® greater or equal than 0.8, 0.85, 09, and 095 leadsto
the choice of ARMA(8,0) as the modd with least number of parameters that is correlated to the
dationary series a more than 80%. The corresponding vaue of the corrdation coefficient is
r 9 =096. Power spectrd dengties of the stationary series and ARMA(8,0) are shown in
Fig. 6.32. It is noted that the relative extrema of the dationary series are very closdy
approximated by the ARMA modd, asit is the case for the area under the PSD of the origind.

Recongructions are formed for this ARMA modd and multiplied by the determinidic
sding function.  After adding the deterministic mean variaion, m, dran life curves are
obtained for the origina loading, where the bounded life caculation is performed, and for the
recongtruction, Fig. 6.33, where 64 independent reconstructions were performed and averaged
to diminate any bias introduced by a particular recondruction.  This recongtruction is deemed
appropriate as its drain life curve fdls, at least partidly, ingde the bounds of the origind. A
complete recongtruction, using the stationary record obtained from the selected ARMA(8,0)
modd, shown in Fg. 6.31d, is shown in Fig. 6.31e. Strain life curves are dso shown for
ARMA(0,0) and ARMA(1,0), where it is noted that they conditute, as in Section 6.1, the
limiting cases of dl ARMA recondructions. ARMA(0,0) leads to the shortest life, while
ARMA(10) leads to the Ilonget life predicted. Moreover, it is
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Table 6.9.  Correlation coefficient of power spectra, p\”?, for selected ARMA(p,q)
models, where the bold number indicates the minimum order model for a
given correlation value - nonstationary mean and variance case.

p ! 0 1 2 3 4 5 6 7 8 9
1 0.62
2 | 0.48| 0.50

3 [(0.69]|0.71]0.73

4 | 046|052 0.62|0.68

5 | 0.73]|0.74|0.74| 0.74 | 0.75

6 [|075(/0.71|/068|0.58|0.58]|0.59

7 | 056]|054|080|093|0940.95]|0.93

8 0.96 | 095|094 | 095|0.95|0.95|0.93|0.93

9 (089089094096 |096|094|0.91(0.94|0.95

10 | 0.95(092({0.93[0.94|094|0.94|0.91|0.95|0.94| 0.94
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Figure 6.32. Power spectral density for the stationary series and for ARMA(8,0) with
P =096 - nonstationary mean and variance case.
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Figure 6.33. RMS strain level, &, versus blocks to failure, N,, for original history and a history reconstructed with M, =41,
M =70, and ARMA(8,0) - nonstationary mean and variance case.
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noted that, as for the case of a nonstationary mean variation in Section 6.2, ARMA(0,0)
and ARMA(1,0) are closer to the bounds of the original than is the case of the stationary
loading in Section 6.1. Again, this can be explained by the presence of the mean

variation.

The power spectral density of the reconstructed history is shown in Fig. 6.30, where it
should be noted that the PSD is shown on a logarithmic scale and the overall agreement is
actually very close. Finally, for visual comparison, the rainflow and damage histograms
are obtained and shown in Figs. 6.34-6.35. The overall agreement is good; both the large
number of small cycles and the small number of large cycles being well approximated.
To demonstrate the consistency of the reconstruction, Fig. 6.36 shows five independently

simulated records.
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Figure 6.34. Rainflow histograms for (a) original and (b) reconstruction, with M, =41,
M, =70, and ARMA(8,0) - nonstationary mean and variance case.
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Figure 6.35. Damage histograms for (a) original and (b) reconstruction, with M =41,
M, =70, ARMA(8,0), &, = 0.1% - nonstationary mean and variance case.
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Time series plots for original history and reconstructions with the
deterministic mean, M, =41, and the deterministic scaling function,
M =70, where different simulations of the ARMA(8,0) model are used -
nonstationary variance case.
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CHAPTER 7. STUDIES OF MULTIAXIAL LOADINGS

A strain gauge rosette history was obtained from an automotive front suspension compo-
nent driven through proving ground maneuvers. This history was provided by General
Motors Corporation, MI, to the Society of Automotive Engineers, SAE, Fatigue Design
and Evaluation Committee. This set constitutes three channels, where channels 1 and 3
measure strain in directions perpendicular to each other and channel 2 measures strain
along a direction which is half between channels 1 and 3. All fatigue life calculations
were performed by Lokesh Juneja (according to aforementioned multiaxial fatigue model,
Juneja, 1992) and are based on the material properties of SAE 1045 steel, stated in Table

6.1.

7.1 Stationary Mean and Variance

The history, Fig. 7.1, containing 12500 points, constitutes one block. The auto- and
cross- spectral densities, S ( f ), where i, j =1, 2, 3 refer to channels 1, 2, 3, are shown in
Figs. 7.2-7.7. As the history consists of three channels, no meaningful normalization with
respect to mean or variance can be achieved. The basic statistics of all three channels, for

original and reconstructed record, are shown in Table 7.1.

According to the employed model of Eq. (5.1), the history is decomposed into its
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Figure 7.1.  Time series plots for strain gauge data (a) channel 1, (b) channel 2, and (c)
channel 3.
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Figure 7.2.  Power spectral density, S,,(f), for the original history and a reconstructed
history.
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Figure 7.3.  Power spectral density, S,, ( f ), for the original history and a reconstructed
history.
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Figure 7.4.  Power spectral density, S,,(f), for the original history and a reconstructed
history.
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Figure 7.5.  Power spectral density, S,,(f), for the original history and a reconstructed
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Figure 7.6.  Power spectral density, S,;(f), for the original history and a reconstructed
history.
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Table 7.1. Basic statistics for original and reconstructed 3 channel history.
Channel 1 Channel 2 Channel3
Original | Reconstruction Original | Reconstruction Original | Reconstruction

Mean 205.478 204.782 — 34.603 —34.494 158.532 159.480
Standard Deviation| 114.104 112.579 25.561 25.199 258.937 255.718
Skewness 0.456 0.380 —0.650 —0.590 — 0.467 —0.458
Minimum 16.950 —-57.213 | -119.768 | —127.471 | —485.613 510.565
Maximum 589.808 582.593 12.046 22.738 722.396 | —738.664
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three components, the mean component, m,, the scaling function, s,, and the stationary

)

R m(z), and

random part, n,, where it is understood that the three channels, such as m )

(3)

.~ constitute the respective vector, m,, and will from now on be referred to as m,li”‘. In

(@)

t

m
order to model the variation of the mean, m,”, in a deterministic way, various Fourier se-
ries with increasing numbers of terms are formed, giving the tentative mean descriptions.
(@), )

.7 -s,”, are obtained.

The differences of the original records and each mean description, n,” - s

These differences are then analyzed for deviations from being a zero-mean process. The

(@)

best mean description is chosen as the one that renders n,(i ). S,

stationary, with respect to
its mean, using the Fourier series with the least number of terms.

) -st(i) , the same analysis as for the

In order to analyze the mean-removed records, n,(i
uniaxial cases is performed. Each channel is divided into N, intervals each of which
contains, according to Section 5.3, N, =50 points. This leads to N, =250 intervals, for

each of which the interval mean is determined.

Run tests based on the total number of runs, the number of runs up and down, and the
length of the longest run, are performed on the sequence of interval means calculated

(@) . o)

from n,"”-s,".

s This assures that a variety of deviations from the expected random

behavior of this sequence can be detected.

Confidence intervals for run tests at levels =090, =095, and o =098 are
shown in Table 7.2, where a =0.95 is chosen as the level at which run tests will be
performed. For the case where N, =250, the 95% (& = 0.95) confidence limits for the
total number of runs are (1 10<u, < 141), while the number of runs up and down covers
the range (153 <My, < 179). The length of the longest admissible run, according to Eq.
(5.16) for a
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Table 7.2.  Results of run tests of channels 1, 2, and 3 for different values of M, for o = 0.95 (italics = failure of test, bold
accepted as stationary ).
N, =250
Channel 1 Channel 2 Channel 3

o =098 107<r,<144 |150<r,,<181| k<6 |107<r,<144 |150<r,,<181| k<6 |107<r,<144|150<r,,<181| k<6

o =090]113<r,<138 [155<r,,,<177| k<6 |113<r,<138 [165<r,,<177| k<6 |113<r,<138|155<r,,<177| k<6

o =0.95/110<r,<141 [163<r,,<179| k<6 |110<r.<141|153<r,,<179| k<6 |110<r,<141|1563<r,,<179| k<6
M, Iy o k Iy o k Iy Mo k
25 96 119 6 98 113 6 108 123 6
30 106 129 S 104 129 S 114 129 4
35 114 137 S 110 133 S 110 123 S
40 120 141 4 122 143 4 120 135 4
45 128 139 4 128 141 4 132 143 4
50 140 155 4 136 153 4 142 147 4
95 152 153 4 150 155 4 150 157 4
60 158 167 3 156 161 4 156 165 3
65 164 169 3 156 163 3 164 169 3
70 164 173 3 164 169 3 168 175 3
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random sequence of length 250 is K=6.

It can be seen that for both channels 1 and 2 a value of M, =50 renders the series

M), ). (@

.,/ and nt(2 -s,”) stationary with respect to their mean. For channel 3, however,

there is no value for which all run tests are passed. For M, =50 the total number of
runs, 7;, is just above the allowable range and the number or runs up and down, 7,,,, is
slightly below the allowable range. Other values of M, would possibly lead to a series
that would pass at least one of the two tests. However, it is believed that failing both tests
by a slim margin is preferable. Therefore, a total number of M, =50 Fourier series

coefficients is deemed appropriate for a sufficient mean description to render the series

n® . s® approximately stationary with respect to its mean value. See also Figs. 7.8b,

7.10b, and 7.12b for the deterministic mean models, ml.(t), and Figs. 7.8c, 7.10c, and

7.12¢ for the mean removed records, n'” -5,

(i)

t b

In order to model the scaling functions, s,"”, an estimate of the standard deviation of

the time series, oN',(i), is obtained according to Eq. (5.4), and shown in Figs. 7.8d, 7.10d,
and  7.12d, respectively. In order to concisely represent ON',(i) the Box-Cox

transformations are performed, where 4, =—-0.613, 4, =—1318, and A, =—-0.524 are the
(i)B

B¢ are shown in Figs.

optimal transformation parameters, and the transformed series, &
7.8e, 7.10e, and 7.12e. A number of Fourier series with an increasing number of terms
are formed according to Eq. (5.9) giving the tentative scaling functions. The series with

the fewest number of terms that is correlated at 95% to 5}”3 <, s,(i)B “,has M, =40 terms

for channel 1, M =90 terms for channel 2, and M =80 terms for channel 3. These

series are shown in is shown in Figs. 7.9a, 7.11a, and 7.13a. The inverse Box-Cox trans-

(@)

formations of s, @,

are the scaling functions used to render the mean- removed
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Figure 7.8. Time series plots for (a) original history, (b) deterministic mean with
M, =50, (c) mean-removed series, (d) estimated standard deviation, &,
. ~ ~ BC
(e) Box-Cox transformation of 6,, 6, - channel 1.
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Figure 7.9. Time series plots for (a) Fourier series approximation to &7¢ with
M, =40, s°°, (b) scaling function, s, (c) stationary series, (d)
ARMA(6,5) model simulation, and (e) reconstruction - channel 1.
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Figure 7.10. Time series plots for (a) original history, (b) deterministic mean with
M, =50, (c) mean-removed series, (d) estimated standard deviation, &,
. ~ ~ BC
(e) Box-Cox transformation of 6,, 6, - channel 2.
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Figure 7.11. Time series plots for (a) Fourier series approximation to &7¢ with
M, =90, s°¢, (b) scaling function, s, (c) stationary series, (d)
ARMA(6,5) model simulation, and (e) reconstruction - channel 2.
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Figure 7.12. Time series plots for (a) original history, (b) deterministic mean with
M, =50, (c) mean-removed series, (d) estimated standard deviation, &,
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(e) Box-Cox transformation of 6, 0, - channel 3.
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Figure 7.13. Time series plots for (a) Fourier series approximation to &7¢ with
M, =80, s°°, (b) scaling function, s, (c) stationary series, (d)
ARMA(6,5) model simulation, and (e) reconstruction - channel 3.
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(i)

t

(@)

series, n,” s,

-s,", stationary with respect to variance and are shown in Figs. 7.9b, 7.11b,

and 7.13b. The stationary series, i.e. the quotient of n”) - s and s, are shown in Figs.

7.9¢c, 7.11c, and 7.13c.

The stationary series are represented by a three dimensional ARMA model. Parame-
ters for a number of ARMA models are estimated, where Tables 7.3-7.5 show parameters
for a few selected models, and the correlation coefficient between power spectra of these
ARMA models and the spectrum of the stationary series is calculated, Table 7.6. Because
the auto- and cross-spectra of the stationary series are relatively simple, low order ARMA
models fit these spectra well. Therefore, models are sought where all of the spectra,

S,

i

(f) have a minimum correlation of ps" greater than 0.9, 0.95, 097, and 0.98 to the
respective spectra obtained for the stationary series. This leads to the choice of
ARMA(2,0), ARMA(2,1), ARMA(3,0), and ARMA(6,5). It is noted that increasing the
model order beyond ARMA(6,5) does not increase the correlation coefficients. Auto- and
cross-spectral densities for ARMA(2,0) and ARMA(6,5) are shown in Figs. 7.14-7.19.
The area under the spectral densities is well approximated by both models, but the higher
order model traces the peaks better. Moreover, as all spectra are shown on a logarithmic

scale, the agreement is actually quite good.

Time series are generated for all ARMA models, shown in Figs. 7.9d, 7.11d, and
7.13d, are multiplied by the deterministic scaling functions, st(i), and are added to the de-
terministic mean variations, mt(i). A complete reconstruction, using a realization of the
selected ARMA(6,5) model is shown in Figs. 7.9¢, 7.11e, and 7.13e. It is noted that the
original time series for all three channels exhibit, in the regions of /=2500 and ~=10000, a

distinctly different pattern. It is presumed that a maneuver was executed that induced a

142



Table 7.3.

ARMA parameters, ¢, and correlation matrix, V, of white noise input for selected ARMA models.

ARMA(p,q) (0,0) (1,0) (2,0)
0.83 —0.16 —29E-21[ 0.94 -0.20 0.34
o= 1 -0.57 0.10 -0.16 -0.72 0.14 —0.40
69E—-4 —56E-2 093 -7.1E-2 -84E-2  1.60
[—0.16 1.8E-2 -035 |
2 57E-2 —0.24 0.18
| 24E-2 B8JE-3 -0.64
1.18 —091  0.92 0.14 -0.05 0.07 [ 0.12 —34E-2 4.8E-2]
v -091 1.07 -0.82 -0.05 0.35 —41E-2 || -34E-2 032 —24E-2
092 -0.82 1.14 0.07 —41E-2 72E-2|| 48E-2 -24E-2 45E-2
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Table 7.4.

ARMA parameters, ¢; and 0,, and correlation matrix, V, of white noise
input for selected ARMA models.

ARMA(p,q) (2,1) (3,0)
[ 0.73 -0.31 0.29 1.18 =091 092
o= 1 -0.82 —-75E-2 -041 -091 1.07 -0.82
|-74E-2 -93E-2 15 | 092 -0.82 1.14
[—-53E-2 —62E-2 -033 ||{[-0.14 -3.6E-2 —-0.67 |
2 13E-2 -0.23 0.16 —-6.7JE-2 -0.23 0.59
| 21E-2 33E-3 054 || 68E-2 1.8E-2 -090
[ 58E-2 —-6.1E-2 0.20
3 0.32 031 —0.24
-93E-2 -—14E-2 0.17
[—0.31 -0.15 -0.12
0, =1 ~0.17 ~0.31 —74E-2
| -12E-2 -98E-3 -0.23
[-88E—-2 —-29E-2 38E-2][ 0.12 —0.04 4.6E -2
v —29E-2 0.23 —1.7E=21]|-0.04 0.28 —2.5E-2
| 38E-2 -1.7E-2 35E-2| 46E-2 -25E-2 44E-2
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Table 7.5.  ARMA parameters, ¢, and 0,, and correlation matrix, V, of white noise
input for ARMA(6,5) model.

ARMA(6,5) o, 9,
[ 0.88 -0.17 091 |[-0.16 —-1.8E-2  0.50
i= 1 ~0.80 0.19 ~0.83 ~0.16 _52E-2 —034
|-0.22 -34E-2 220 |||-0.13 49E-2 047 |
[—33E-2 35E-2 -150 ||| 0.17 ~-7.6E-3 —0.17
2 —-0.11 -0.23 1.50 —-0.18 0.13 0.33
| 0.26 59E-3 -170 ||[-1.8E-2 -25E-2 6.0E-3
[ 0.37 —84E-3 020 [ 0.4 —22E-2 -0.52
3 0.68 0.65 -0.85 0.33 0.33 0.18
|-42E-2 -29E-2 053 || 45E-2 -45E-2 -031
[—0.73 —-93E-3  0.59 [ 34E-2 —-47E-2 0.06
4 0.23 0.17 0.09 0.21 0.34 -0.18
| 12E-2 -18E-2 -0.27 | 26E-2 -1.IE-2 92E-2]
[ 35E-2 13E-2 020 |[-0.17 6.3E-3  0.08
5 44E-2 96E—-3 —26E-2||-8.6E—-2 —021 0.13
| -0.18 -14E-2 047 || -0.06 -1.5E-2 —-52E-3
[ 0.26 —24E-2 -0.42
6 ~0.18 _28E-2 0.12
| 0.11 3.6E-3 -025 |
88E—-2 —-29E-2 3.8E-2
v -29E-2 0.23 ~-1.7E-2
38E-2 —-1.7E-2 3.5E-2
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Table 7.6.  Correlation coefficient of power spectra, p{’*, for selected ARMA(p.q)
models, where the subscript indicates the auto- or cross-spectrum with
minimal correlation coefficient and the bold number indicates the
minimum order model for a given correlation value.

1 [0.86,,

2 [0.93,,0.96,,

3 [0.97,0.97,,0.97,,

4 0.96,]0.96,|0.97,,0.96,,

5 [0.95,,/0.96,,0.96,,0.97,,|0.88,,

6 [0.95,,0.95,,(0.95,/0.94,,/0.86,,/0.98,,

7 [0.97,,[0.97,,[0.97,,[0.97,,|0.86,/0.88,,| 0.97,,

8 [0.94,,0.94,,0.94,,/0.96,,|0.86,,/0.88,/0.98,,0.97,,
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Figure 7.14. Power spectral density, S,,(f), for the stationary series, for ARMA(2,0)
with p¢” =093, and for ARMA(6,5) with p{ = 098.
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Figure 7.15. Power spectral density, S,,(f), for the stationary series, for ARMA(2,0)
with p¢” =093, and for ARMA(6,5) with p{* = 098.
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Figure 7.16. Power spectral density, S;(f), for the stationary series, for ARMA(2,0)
with p¢” =093, and for ARMA(6,5) with p{ =098.
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Figure 7.17. Power spectral density, S,,(f), for the stationary series, for ARMA(2,0)
with p¢” =093, and for ARMA(6,5) with p{* = 098.
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Figure 7.18. Power spectral density, S,,(f), for the stationary series, for ARMA(2,0)
with p¢” =0.93, and for ARMA(6,5) with p{* = 098.
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Figure 7.19. Power spectral density, S,,(f), for the stationary series, for ARMA(2,0)
with p¢” =093, and for ARMA(6,5) with p{ =098.
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few large amplitude short duration (spike) events. The spectral content of this part of the
series is therefore distinctly different from the remaining series. Consequently, the recon-
struction will perform poorly in that region. It can be seen in the reconstruction that for
these regions a much larger number of large amplitude cycles are predicted than were pre-

sent in the original loading. This will affect fatigue life predictions.

The power spectral densities, S, (f), of the reconstructed histories are shown in Figs.
7.2-7.7., where again it is noted that the spectra are shown on a logarithmic scale. As the
spectra are calculated for the record as a whole, any of the above stated variations in spec-

tral content, as they are of short duration, are averaged and cannot be observed.

Fatigue lives are calculated according to the simplified critical plane approach de-
scribed in Section 4.2.1, and these are shown in Fig. 7.20. Reconstructions using
ARMA(2,0), ARMA(2,1), ARMA(3,0), and ARMA(6,5) predict fatigue lives that are
very close to each other, such that strain life curves partially overlapped. As before, the
ARMA(0,0) and ARMA(1,0) models constitute the limiting cases on fatigue life.
Because the reconstruction introduced a number of large cycles that are not present in the
original loading, all reconstructions tend to be biased toward shorter lives. In fact, the
limiting case of the ARMA(1,0) reconstruction that predicts the longest life is the one that
is closest to the life predicted for the original record. However, of all reconstructions
with a minimum correlation for the power spectra, p(S‘Z ' >090, the strain life curve
obtained from the ARMA(6,5) model was closest to the one obtained from the original
loading. The ARMA(6,5) model was, therefore, deemed appropriate for reconstruction as

both spectral shape and fatigue life agreed reasonably well with the original.
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

The proposed method presents an efficient and effective solution to the modeling of non-
stationary random fatigue loadings. As the time base of the original loading is preserved,
it is applicable wherever a concise load description, preserving information regarding fre-
quency content, is desired. The method, therefore, can be used in a diversity of fields,

such as random vibration, Monte Carlo studies, and Finite Element Methods.

For all studied cases, the ARMA(0,0) reconstruction predicted a shorter fatigue life
than higher order models, while the ARMA(1,0) model predicted a fatigue life longer

than higher order model reconstructions.

The ability of to generate a loading ensemble is useful in generalizing observed load-
ings. Statistically equivalent variations of an observed loading can be obtained, with the
option of specifying, separately for the mean and variance content, the degree of correla-

tion between original and reconstructed loadings.

The traditional procedure of ARMA model building needs adjustment for large data
sets, specifically in specifying criteria of model order selection that do not depend on the
series of residuals after fitting a model. The criteria presented in the literature demand

models of very large order, when a lower order model is sufficient for representing all
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relevant dynamics of the original loading. The criterion, proposed herein, is a first

attempt to the solution of this problem.

To measure the success of removing nonstationarity with respect to the mean value,
nonparametric tests were proposed. While these tests are useful in detecting trends and
cyclical patterns, they did not always allow one to uniquely identify an optimal mean de-

scription.

Further study of the following aspects is proposed:

To take fully advantage of the stochastic nature of the model, the method of fatigue
life prediction should be adjusted. Calculating the life from a short record, by assuming
that this record would be applied repeatedly until failure occurs, does not reflect realistic
variations in loadings. It is proposed that generating nonrepeating infinitely long histories

could be used to calculate a more realistic fatigue life estimate.

For the case of multiaxial loadings, correlations between channels should be consid-
ered not only for the random variations, but also for mean content and scaling functions.
This objective can be achieved by using vector Fourier series, where the Fourier coeffi-

cients can account for correlations between channels.

The proposed method of ensemble generation could be verified if more data were col-
lected for a particular record. In general, it can be said that, for a meaningful stochastic
analysis, a field test should be repeated for a number of times before reliable information

about the underlying ensemble can be inferred.
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Considering nonstationarities with respect to mean and variance only is not always
sufficient. Loadings of short duration and large amplitude, so called spikes or pothole
events, are not included in the current description of loadings. Moreover, as seen in
Chapter 7, the power spectral density may change over time even for a record for which
the mean variation has been removed, and a scaling function applied, such that the
variance is constant. Further study in identifying and modeling such nonstationarities,

therefore, is needed.
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