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(ABSTRACT) 

 

The concise description of one- and multidimensional stationary and nonstationary 

vehicle loading histories for fatigue analysis using stochastic process theory is presented 

in this study.  The load history is considered to have stationary random and nonstationary 

mean and variance content.  The stationary variations are represented by a class of time 

series referred to as Autoregressive Moving Average (ARMA) models, while a Fourier 

series is used to account for the variation of the mean and variance.  Due to the use of 

random phase angles in the Fourier series, an ensemble of mean and variance variations is 

obtained.  The methods of nonparametric statistics are used to determine the success of 

the modeling of nonstationarity.  Justification of the method is obtained through 

comparison of rainflow cycle distributions and resulting fatigue lives of original and 

simulated loadings.  Due to the relatively small number of Fourier coefficients needed 

together with the use of ARMA models, a concise description of complex loadings is 

achieved.  The overall frequency content and sequential information of the load history is 

statistically preserved.  An ensemble of load histories can be constructed on-line with 

minimal computer storage capacity as used in testing equipment.  The method can be 

used in a diversity of fields where a concise representation of random loadings is desired. 
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CHAPTER 1.  INTRODUCTION 

 

Engineering's primary objective is to design structures to fulfill a function and guard this 

design against failure.  A common failure mode is fatigue, i.e. cracking or disintegrating 

of parts of the structure caused by repeated loading.  Fatigue analysis, therefore, is an im-

portant part of the design process for any structure or component subject to repetitive dy-

namic loading. 

 The analysis with respect to fatigue failure gains more importance as structures are 

designed, primarily for economic reasons, to have a finite life.  Weight and size 

consideration in efficient design mandate for a structure to survive safely all anticipated 

operating loads, yet a structure must not be over designed to the degree that it becomes 

uneconomical to built or operate.  Particularly in the area of vehicle design it has become 

the objective to design components to safely perform only over a prescribed service 

interval. 

 One of the crucial elements in fatigue analysis is detailed knowledge of the operation 

conditions and the associated loading to which the component in question is subjected.  

For some cases the loadings can be estimated in advance of the analysis in many cases of 

structural analysis, however, a preliminary design is necessary to obtain actual loadings, 

which is done by subjecting the preliminary design to the environment in which the final 

structure is supposed to operate. 
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 Because the phenomenon of fatigue failure is still not fully understood, for complex 

structures, analytical studies alone cannot provide sufficient information for a fatigue safe 

design.  Two methods for verification of a design are simulation studies and fatigue test-

ing.  Fatigue testing exposes a structure to dynamic loads as they would be anticipated un-

der operating conditions and records the life to failure.  For more effective and better con-

trolled testing it has become customary to perform many fatigue tests in a laboratory 

rather than in the actual environment of operation.  As testing equipment has become 

more advanced, these laboratory fatigue tests provide the means for reliable and efficient 

repetition of complex loadings.  Simulation studies, such as Monte Carlo simulations, on 

the other hand, are computer based calculations of the fatigue life according to a model 

for the structure and the fatigue phenomenon, including uncertainties with respect to 

structural and or loading parameters.  For both fatigue testing and simulation studies an 

efficient description of the loading environment is necessary. 

 In general, fatigue loadings are lengthy because fatigue failure occurs only after many 

repetitions of the applied load. In the case of complex loadings with a variety of different 

loading events, it is desired to reduce these lengthy records for further analysis.  The two 

main methods of reduction are the building of mathematical models to describe the loads, 

or the actual loading data are condensed to fatigue relevant information only.  From either 

the formed model or condensed description, fatigue load histories then can be recon-

structed for simulation studies or for laboratory testing of test specimen or actual compo-

nents.  The accurate and concise modeling of lengthy fatigue loadings is the objective of 

this study. 

 Load modeling can be accomplished by two principal methods. Depending on the 
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 problem, either a deterministic function or a stochastic process is used to reproduce es-

sential features of the original history. The deterministic approach uses a well defined 

function to describe the original history.  The stochastic approach attempts to describe the 

load data in terms of a random process which has statistical characteristics similar to that 

of the original history.  If the load records are of random nature, as they are for many 

structural components exposed to environmental loads, the stochastic approach is most 

suitable. 

 Stochastic methods can further be divided into regression analysis and time series 

analysis, where the former method assumes that the observations are statistically inde-

pendent and therefore disregards information with regard to the sequence of observations.  

The latter method, on the other hand, takes into account the relation of observations over 

time.  Because for dynamic loadings observations will be related to each other, time series 

analysis methods are used in this study to model loadings.  In particular, a class of sto-

chastic processes referred to as Autoregressive Moving Average models, ARMA, are used 

to represent random variations in load records. 

 Another distinction among random processes can be made with respect to stationarity.  

A nonstationary record is recognized as one for which some characteristics, such as mean 

or variance, change over time.  This nonstationary behavior can be modeled in variety of 

ways.  In the current study a Fourier series description is chosen to account for nonsta-

tionarities. 

 Depending on the type of loading, a single channel or multichannel description may 

be necessary.  For the case where only one variable is under observation, such as strain in 

one direction, a single channel description is appropriate.  For the case, however, where a 
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multiaxial state of strain is to be investigated,  a multichannel history will be observed 

and needs to be modeled as such to account for interdependencies among channels. 

 The model proposed herein gives the first complete description of nonstationary 

multichannel fatigue loadings using ARMA models.  In comparison to other commonly 

used methods of history reconstruction such as the Rainflow method, the To-From matrix 

method and the power spectral density (PSD) method, the presented approach is superior 

on four accounts.  First, the model requires fewer parameters to accurately describe the 

original loading.  Second, the dynamic characteristics, also referred to as correlations, are 

preserved in the reconstruction as it is the case only for the PSD method.  Third, mul-

tichannel situations are covered as a consistent extension of the single channel case.  

Finally, a truly stochastic description is achieved, such that regenerated records can be 

infinitely long with no periodicity. 

 Including this introduction, the dissertation consists of the following chapters.   A lit-

erature review containing an overview of random fatigue load modeling and ARMA 

models in structural dynamics is presented in Chapter 2.  The theory of ARMA models is 

presented in Chapter 3.  Fatigue life calculations as they are used in this study are re-

viewed in Chapter 4.  The proposed random fatigue load model is presented in Chapter 5.  

Case studies for uniaxial and multiaxial loadings are shown in Chapters 6 and 7, respec-

tively  The dissertation is concluded in Chapter 8 with summarizing remarks and recom-

mendations for further work. 
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CHAPTER 2.  LITERATURE REVIEW 

 

A review of the literature pertinent to this dissertation is presented.  First a review of 

common methods for random fatigue load representations is provided.  Furthermore, the 

use of ARMA models in stochastic structural dynamics is reviewed. 

2.1  Random Fatigue Load Modeling 

Fatigue load histories are in general lengthy and of irregular nature.  Three reasons (Beste 

et al., 1991) make it desirable to find a concise description.  First, the amount of storage 

required can be reduced.  Secondly, concentration on the fatigue relevant content allows 

reducing the length of the history.  Finally, manipulation of histories becomes possible, 

including the superposition and extrapolation of histories. 

 In fatigue load reconstruction the strategy is to define some characteristic of the 

original loading such as power spectral density, rainflow cycle content, etc., as the target 

spectrum.  A simulated history has to have similar characteristics to be a faithful recon-

struction, i.e., it has to meet the target spectrum.  Furthermore, the load description needs 

to allow for efficient regeneration of histories, preferably in real time (Buxbaum, 1979).  

Two basic approaches exist to random load modeling (Bílý and Bukoveczky, 1976).  

Either only extreme values are being recorded and subsequently reconstructed, or the 

whole history is taken into account. 
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2.1.1  Methods of Modeling Extreme Values 

These methods are model free and they evaluate the time series via a count.  Methods of 

reconstructing only the extreme values reduce the required storage by discarding all inter-

mediate points.  These methods work well for fatigue loading histories in the absence of 

creep, because only the extremes induce fatigue damage, while intermediate points are ir-

relevant. 

In the Rainflow Matrix method (Dowling, 1972; Perret, 1987; ten Have, 1989) the fa-

tigue relevant information is summarized in the form of a rainflow range mean matrix 

containing the distribution of closed stress-strain hysteresis loops formed by the original 

history.  As a result, the rainflow cycles of the reconstructed histories are identical to 

those of the original history, while the reconstruction yields histories with a different 

sequence of loadings. The loading sequence, however, has been shown to affect the fa-

tigue life (Gassner, 1941; Buxbaum et al., 1991) and should therefore be preserved.  

Finney and Denton (1986) quantified this effect on life for different reconstructions.  The 

sequence of events in a history reconstructed from a rainflow matrix is governed by 

principals of the rainflow counting method, yet many possible sequences can be 

reconstructed.  Khosrovaneh (1989) and Khosrovaneh and Dowling (1990) show a 

method to obtain reconstructed records which do not exhibit any distinct pattern, i.e., they 

appear to be of random nature as the original loading.  A more formalized approach, not 

yet accepted in the international community though, to obtaining sequences with random 

characteristics is presented by Krüger (1985) and more recently Krüger et al. (1992). 

The To-From Matrix method (Haibach et al., 1976; Dowling and Thangjitham, 1987; 

Fash et al., 1989) requires information concerning the transition behavior between adja-
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cent peaks and valleys.  Similar to the rainflow matrix method of reconstruction, the load 

history is discretized into a convenient number of levels.  The time series for peaks and 

valleys is regenerated using the To-From Matrix without considering the intermediate 

points.  This method provides an identical number of peaks and valleys as of the original 

history but results in different rainflow cycles and sequence of the original loading. 

2.1.2  Methods of Modeling Complete Histories 

These methods are concerned with the descriptions of random loadings based on correla-

tion theory.  For these techniques, a model is formed which becomes a substitute for the 

data, this leads to a concise description with few parameters.  A model may be defined 

either in the time or frequency domain. 

A commonly used method proposed by Yang (1972) represents the random data by its 

power spectral density, i.e., the distribution of the power of the process over frequency.  

Wirsching and Shehata (1977) used this type of simulation, also known as the PSD 

method, and verified experimentally its suitability.  Therefore, it is generally accepted that 

if the power spectral density of the model matches the data, a successful reconstruction 

can be obtained. 

Approaches in the time domain include the Markov method, which is based on a ran-

dom process that has a single step memory, i.e. the current value of the process depends 

only on the previous value.  Transition probabilities for any two adjacent points are de- 
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duced from the original history.  This method is particularly successful for processes 

which contain only correlation between two adjacent points.  An extension to this method 

is shown by Sørensen and Brincker (1989) who derive a reconstruction method yielding 

only extreme values. 

A more general class of time series models called Autoregressive Moving Average 

(ARMA) models also have been used in fatigue load modeling.  These models in essence 

match the spectral content of data to any desired degree.  Moreover, they lead to concise 

descriptions and operate in the time domain, allowing for efficient load reconstruction.  

Figure 1 (Dowling et al., 1992) shows a typical stationary random load history and recon-

structions using the Power Spectral Density method, an ARMA model, the To-From 

method, and the Rainflow Matrix method. 

2.1.3  Fatigue Damage Estimation without Simulation 

The most accurate procedure for fatigue analysis is to simulate a time history, identify 

rainflow cycles, and then using a damage accumulation model, calculate fatigue life.  

However, because this procedure is lengthy and requires many simulations to obtain an 

accurate estimate, considerable effort has been made to estimate fatigue damage without 

simulating time series. 

Commonly used models for the description of the loading are the power spectral den-

sity function (Wirsching and Haugen, 1973; Wirsching and Light, 1980; Wu and Huang, 

1993) and the Markov process (Krüger and Petersen, 1985; Frendahl and Rychlik, 1993).  

The distribution functions of rainflow cycles can also be estimated without simulating 

time series.  For the case of a Markov process, contributions are due to Rychlik (1989)  
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Figure 2.1. Portion of an original fatigue loading history and typical reconstructions 

by PSD, ARMA, To-From, and Rainflow method, respectively. 
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 and Bishop and Sherratt (1990) and for general Gaussian loads due to Rychlik (1992). 

2.2  ARMA Models in Structural Dynamics 

Autoregressive models were introduced by Yule (1927) in the context of modeling sun-

spot activity.  Slutzky (1927) was the first to use moving average models to detect 

cyclical trends in economic time series.  Bartlett (1946) noted the important relationship 

between ARMA models and systems characterized by linear differential equations.  A 

linear system sampled at discrete points in time will lead to a time series that is identical 

to one obtained from an appropriate ARMA model.  The book Time Series Analysis 

Forecasting and Control by Box and Jenkins (1970 and 1976) unified different 

approaches to ARMA model building and has become the standard reference.  

Applications to engineering problems using ARMA models have appeared in an 

increasing number since the early 1970's. 

Efficiency with respect to storage requirement and regeneration effort and the equiva-

lence of an ARMA model and the response of a linear elastic system to random loads led 

to the use of ARMA models in the field of stochastic structural mechanics.  In particular, 

the estimation of the response of randomly excited linear systems and the simulation of 

load records have received attention.  Random load modeling using ARMA models has 

traditionally been concentrated in the fields of earthquake-, wind-, and ocean-engineering. 

Gersch et al. (1973) obtained estimates of the period and damping values of a linear 

multi-degree-of-freedom structure from random load histories via an ARMA model.  Pi 

and Mickelborough (1988) identified modal parameters of a structure from load records 

using  ARMA models.  Li and Kareem (1990) obtained the response of a linear system 
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excited by a forcing function formulated as an ARMA model.  An emerging technique in 

random vibration analysis called Monte Carlo simulation requires a large number of re-

cords of random loads to obtain reliable response estimates.  Spanos and Mignolet (1989) 

review at length the literature on ARMA models for Monte Carlo studies. 

Methods for efficient simulation of random processes have been presented by 

Samaras et al. (1985), Mignolet and Spanos (1987), and Spanos and Mignolet (1987) for 

the univariate case.  Methods for modeling multivariate time series are due to Gersch and 

Yonemoto (1977) and Tiao and Box (1981).  Random fields were introduced to ARMA 

models by Naganuma et al. (1987), with the most recent extensions by Spanos and 

Mignolet (1992) and Mignolet and Spanos (1992). 

The modeling of a stationary fatigue loading is demonstrated by the matching of a fre-

quency domain target spectrum using an autoregressive model by Lin and Hartt (1984).  

An experimental study showing the applicability of autoregressive processes to fatigue 

load modeling is due to Sarkani (1990).  Dowling et al. (1992) and Thangjitham et al. 

(1993) showed the good agreement of rainflow matrices and fatigue life (both simulated 

and experimentally obtained) for a typical stationary random ground vehicle loading.  

Leser et al. (1993) show good agreement of the same measures for a nonstationary record. 

For the case of earthquake ground motion modeling, both random variation and non-

stationarity are present.  The so called Kanai Tajimi spectrum has been developed as rep-

resentative for the stationary random component of earthquakes.  Spanos and Mignolet 

(1987) developed ARMA models which approximated this target spectrum well.  

Polhemus and Cakmak (1981), Cakmak and Sherif (1984), and Turkstra et al. (1988) use 

a stationary ARMA model modulated by a deterministic function to account for the 
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typical build up and decay of variance in earthquake acceleration time series.  The 

assumption of the earthquake records being piece-wise stationary led Chang et al. (1982) 

to the method of modeling segments of the record individually by low order ARMA 

models.  Finally, time varying ARMA parameters can be employed to account for the 

nonstationary nature of the observed series (Nau et al., 1982; Gersch and Kitagawa, 1985; 

Toki et al. 1985; Deodatis and Shinozuka, 1988).  Hoshiya et al. (1988) use an AR model 

to describe a temporally and spatially propagating earthquake.  A review of the literature 

describing the use of ARMA models in earthquake engineering is due to Kozin (1988). 

Wind velocities are simulated using ARMA models in the context of structural design 

of buildings.  The von Karman spectrum is deemed an authentic target spectrum for wind 

loads.  Good approximation to this target spectrum using ARMA models have been ob-

tained by Spanos and Schultz (1985, 1986).  A tri-directional wind loading is modeled by 

Spanos and Mignolet (1987), and wind velocity and air pressure on a cooling tower were 

represented with an ARMA model by Reed and Scanlan (1983).  The extreme values of a 

wind loading were investigated by Tavares (1977), while Li and Kareem (1990) repre-

sented both input and output of the model of a wind loaded structure by ARMA models. 

The simulation of wave kinematics is important in ocean engineering.  The so called 

Pierson Moskowitz (P-M) spectrum is often used as a realistic target to verify 

simulations.  Spanos (1983) shows pure autoregressive, moving average, and ARMA 

models which agree with the P-M spectrum.  Spanos and Mignolet (1987) and Mignolet 

and Spanos (1988) demonstrate an ARMA model obtained via pure AR or MA models 

respectively, which almost perfectly matches this spectrum.  Other contributions to the 

modeling of wave elevation are due to Holm and Hovem (1979), Houmb and Overvik 

(1981) and Fines et al. (1981). 



 

 13

Textbooks covering model order and parameter estimation techniques and practical 

applications of ARMA models have appeared since the work by Box and Jenkins (1970, 

revised 1976) by Chatfield (1980), Pandit and Wu (1983), Brockwell and Davis (1987), 

Marple (1987), Kay (1988), Wei (1990), and Pandit (1991). 
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CHAPTER 3. AUTOREGRESSIVE MOVING AVERAGE 

MODELS 

 

Characteristics regarding estimation and model building for Autoregressive Moving 

Average, ARMA,  models are discussed here.  ARMA models are employed in this study 

to represent the stationary content of random fatigue loading histories as they provide a 

versatile method for accurate and concise modeling. 

3.1  Model Description 

According to Box and Jenkins (1976), the dynamic relationship between two sequences 

yt  and xt  observed at discrete time intervals, t = 1 2, , K, which are related to each other, 

can be represented by the linear, time invariant, and causal system 

 ( ) ( ) tttttt xBxBBxxxy ννννννν =+++=+++= −− KK 2
21022110  (3.1) 

where B is the so called back-shift operator such that B x xi
t t i= − .  For brevity, ( )Bν , 

which in general is of infinite order can, often with sufficient accuracy, be efficiently 

represented by two polynomials, each of lower order than ( )Bν , such that 

( ) ( ) ( )BBB ΦΘ=ν .  Therefore, Eq. (3.1) can be rewritten as: 
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 ( ) ( ) tt xByB Θ=Φ      (3.2) 

where ( ) ( )p
pBBBB φφφ −−−−=Φ   1 2

21 K  and ( ) ( )q
qBBBB θθθ −−−−=Θ   1 2

21 K . 

 When both yt  and xt  are observed time series, for example they present the input and 

output of a system, the modeling of ( )Bν  is referred to as transfer function modeling and 

( )Bν  is called the linear transfer function.  If, however, only yt  is observed due to lack of 

information or desired simplification of the analysis, one can postulate an input x et t=  

and determine a transfer function ( )Bν  such that: 

 ( ) tttt eBeey ννν =++= −   110 K    (3.3) 

where et  is a Gaussian white noise sequence, i.e. a sequence of independent normally 

distributed random variables with zero mean and constant variance, σ e
2 , having a power 

spectral density that is flat over a wide range of frequencies (Bendat and Piersol, 1986).  

Then, yt  is called the general linear process. 

 The desire for a parsimonious description of yt  leads to the substitution of ( )Bν  with 

( ) ( )( )BB ΦΘ  and the observed series, yt , then can be rewritten as 

 ( )
( ) ( ) ttt eBe
B
By ν=

Φ
Θ=     (3.4) 

 This leads to the equivalent notations of an ARMA model  in backshift operator form 

 ( ) ( ) tt eByB Θ=Φ      (3.5) 
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and in summation notation 

φ θ φ θi
i

p

t i i
i

q

t iy e
=

−
=

−∑ ∑= = − = −
0 0

0 01 1,    (3.6) 

 Therefore, the technique of fitting an ARMA model to an observed sequence of data 

can be seen as an attempt to transform the observed sequence, yt , to white noise, et , via 

the inverse transfer function ( ) ( ) ( )BBB ΘΦ=−1ν . 

 The two components of an ARMA(p,q) model are the autoregressive part AR(p) de-

fined by ( )BΦ  and the moving average part MA(q) given by ( )BΘ .  The autoregressive 

and moving average components form individually meaningful models, ( ) tt eyB =Φ  and 

( ) tt eBy Θ=  respectively, but it is usually the full ARMA model that leads to the most 

concise form equivalent to the general linear process of Eq. (3.3).  Another characteristic 

of ARMA models that can be useful in parameter estimation is that an ARMA model of 

finite order can be represented by an equivalent AR or MA model of infinite order. 

 There are two important restrictions on the values the ARMA parameters can assume 

(Box and Jenkins, 1976).  The first restriction is with regard to the AR parameters.  In or-

der to yield a stable model, i.e. a model leading to a time series that does not become un-

bounded, the following must hold.  The roots of ( ) 0=Φ B  must lie outside the unit circle 

of the complex plane.  Similarly, a restriction on the MA parameters can be made.  In or-

der for the inverted ARMA model, ( ) ( )( ) tt yBBe ΘΦ= , to yield bounded output, et , the 

following must hold.  The roots of ( ) 0=Θ B  must lie outside the unit circle of the com-

plex plane.  However, one can always transform the MA parameters, such that an invert-

ible model is obtained.  While stability is necessary for a model to be used in simulating 
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stationary series, invertibility is mainly useful in the step of model building and does not 

have to be satisfied for simulating a time series.   

 The ARMA model can also be conveniently represented in the frequency domain 

(Priestley, 1981).  The one sided power spectral density, ( )fS , corresponding to an 

ARMA(p,q) model is given in a closed form description as a function of the ARMA pa-

rameters 

 ( )
2
10

  1

  1
2 224

2
2

1

224
2

2
12 ≤≤

−−−−

−−−−
=

−−−

−−−

f
eee

eee
fS

fpi
p

fifi

fqi
q

fifi

e πππ

πππ

φφφ

θθθ
σ

K

K
 (3.7) 

where f is the linear frequency and i = −1. 

3.2  Vector ARMA Models 

For the case where more than one time series needs to be considered a vector ARMA 

model is introduced.  The reason to model time series jointly is to incorporate dependen-

cies among them. 

 The n-dimensional time series ( ) ( ) ( )[ ]Tn
tttt yyy K21y =  is expressed as 

 φφφφ θθθθi
i

p

t i i
i

q

t i
=

−
=

−∑ ∑=
0 0

y e     (3.8) 

in which φφφφ θθθθi i and  are matrices of order n n× , such as φ kl i  and θ kl i  and superscript T 

indicates the transpose of a vector or matrix.  While φφφφ0 = −In  and θθθθ0 = −In  are without 
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loss of generality assumed to be negative identity matrices of order n n× , et  is an n-di-

mensional Gaussian white noise series with zero mean and crosscorrelation according to 

 E r s
T

rse e = Vδ      (3.9) 

where V  is a symmetric, positive definite, n n×  covariance matrix of the noise and δ rs  is 

the Kronecker delta.  Contemporaneous cross-correlations (correlations between chan-

nels) are expressed through off diagonal terms in φφφφ θθθθi iand , while auto-correlations 

(correlations within a series) are governed by diagonal terms in φφφφ θθθθi iand . 

 Equivalently to the one-dimensional closed form representation of the power spec-

trum, the spectrum, ( )fS , of the n-dimensional process is (Kay, 1988) 

 ( )
11

0

2

0
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*
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*

0

2 fV2S
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fi
j

Tq

j

fi
j

q

j

fi
j

p

j

fi
j eeeef ππππ φθθφ  (3.10) 

with 0 1 2≤ ≤f  and where * indicates the complex conjugate of a matrix. 

3.3  Parameter Estimation 

Statistical inference of ARMA parameters from observed data may be performed either 

through maximum likelihood estimators or through moment estimators.  Both techniques 

yield efficient, unbiased and consistent estimates.  However, the maximum likelihood 

estimation leads to nonlinear equations with possibly more than one relative maximum 

(Kay, 1988).  The nonlinearities are so severe that the commonly used Newton-Raphson 
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(Akaike, 1973) approach will not always converge to a solution.  Therefore, approximate 

procedures in linear form based on the method of moments estimators are often used.  

Two principal methods coexist using an intermediate approximate model either of pure 

autoregressive or pure moving average type.  These methods, while approximate in na-

ture, will converge to the statistically optimal maximum likelihood estimates for estima-

tions based on long time series (Kay, 1988). 

 Using the autocorrelation function of the given data, a large order AR model can be 

built, which is assumed to be a reliable approximation of the target spectrum.  The autore-

gressive parameters can be estimated via a system of linear equations.  The parameters of 

the desired ARMA model are arrived at by minimizing the difference between the 

transfer functions of the pure AR model and of the ARMA model.  The two stage least 

square procedure, as introduced by Theil (1958) and applied to ARMA modeling by 

Durbin (1960), provides the means for the minimization.  Algorithms are described for 

one dimensional ARMA models by Gersch and Liu (1976) and Gersch and Yonemoto 

(1977), for multidimensional cases by Samaras et al. (1985) and for modeling random 

fields by Mignolet and Spanos (1992). 

 For the case of multidimensional time series, a similar two stage parameter estimation 

technique, going from a pure MA model to an ARMA model, has been proposed by 

Spanos and Mignolet (1990) and has been extended to the random field case by Spanos 

and Mignolet (1992).  

 The procedure by Samaras et al. (1985) for multi-dimensional ARMA models is cho-

sen in this study for its numerical efficiency.  An analogous procedure for single channel 
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estimation is presented by Gersch and Liu (1976).  However, the algorithms shown are 

for the special case where autoregressive and moving average part are of the same order.  

Therefore, to allow for more flexible modeling,  the method was extended to the general 

case where both parts may be of different order.  This generalized algorithm is reviewed 

in the following. 

 To estimate the ARMA parameters for the vector time series, y t , shown in Eq. (3.8) 

the target crosscorrelation matrices ( )kyyC  will be used, where 

 ( ) [ ]T
sryy Esr yyC =−     (3.11) 

 However, knowledge of ( ) ( )qkkye  ,  1, 0,for  C K=−  will also be required and is 

therefore derived first, the so called first stage, via a large order AR model.  An AR 

model of infinite order is defined as, 

 ~φφφφi
i

t i m t
=

∞

−∑ = −
0

y I e      (3.12) 

where ~φφφφ ΙΙΙΙo m= −  and ~φφφφi  are the autoregressive parameters to be inferred from y t .  This de-

scription via an AR model is equivalent to the ARMA model of Eq. (3.8) and will also 

possess the same cross-covariance matrix, ( )kyeC .  Therefore, by post-multiplying both 

sides of Eq. (3.12) by y t k
T
− , taking the expectation, and making use of 

 [ ] ( ) 0>for          0Cye kkE ey
T

ktt =−=−   (3.13) 

the following is obtained 
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 ( ) 0>for       0C~
0

kkiyy
i

i =−∑
∞

=

φ    (3.14) 

 Rewriting Eq. (3.14) in matrix from leads to the so called Yule-Walker equations 

 [ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]K
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

φφ  (3.15) 

 In practice, it is necessary to truncate the infinitely long expression of Eq. (3.15) to an 

approximate relationship such as  
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 (3.16) 

 If a sufficiently large value for P is chosen, the AR model will provide a good ap-

proximation to the ARMA model of Eq. (3.8).  In order to obtain values for ( )kye −C , Eq. 

(3.12) is post-multiplied by e e et
T

t
T

t p
T, ,   ,  − −1 K  respectively, and after taking expected val-

ues one obtains 

 ( ) V0C =ye      (3.17) 

and 
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 ( ) ( ) qkkik ye

k

i
iye  ,  2, ,1=for       0C~C

1
K=−+−− ∑

=

φ  (3.18) 

where use has been made of the relation 

 ( ) 0for       0C >= kkye     (3.19) 

which states that the model is causal, i.e. current observations are independent of future 

noise input. 

 In order to obtain the matrix V , both sides of  Eq. (3.12) are post-multiplied by y t
T  

and the expectation is taken, leading to 

 ( ) ( )  0CC~
0

eyyy

P

i
i i −=∑

=

φ     (3.20) 

 If Eq. (3.17) is substituted into Eq. (3.20), it yields 

 ( ) C~V
0

iyy

P

i
i

T ∑
=

−= φ     (3.21) 

 Using Eqs. (3.17) and (3.18) the crosscorrelation matrices ( )0C ye , ( )1C −ye , ... , 

( )qye −C   can be obtained recursively. 

 Now the parameters φφφφ θθθθi i and  in the ARMA model may be determined in the second 

stage of the estimation.  Rewriting Eq. (3.8) as 
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 y e e y y et q p t t q t t p

T

t= − − +− − − −θθθθ θθθθ φφφφ φφφφ1 1 1 1K K K K  (3.22) 

and post-multiplying both sides of equation (3.22) by the matrix 

− −− − − −e e y yt
T

t q
T

t
T

t p
T

1 1K K  and taking the expectation, the following relation is 

obtained 

 
( ) ( ) ( ) ( )[ ]

[ ]D
C1CC1C

11 pq

T
yy

T
yyyeye pq
φφθθ KK

KK

=

−−−−
 (3.23) 

where D is defined as 
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 (3.24) 

which can be solved for the ARMA parameters 

 
[ ]

( ) ( ) ( ) ( )[ ] 1

11

DC1CC1C −−−−−= pq T
yy

T
yyyeye

pq

KK

KK φφθθ
 (3.25) 

 This concludes the derivation of the estimation algorithm.  It is seen that two sets of 

linear equations need to be solved in order to estimate ARMA parameters for the 

observed vector time series, y t . 
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3.4  Model Building 

The interpretation of an ARMA model as the transfer function that transforms an 

observed series to white noise is underlying all criteria for model order determination 

found in the literature.  ARMA models for various values of (p,q) are fitted to the data 

and the appropriate model is sought through criteria based on the residuals, et , obtained 

from ( ) ( ) ( ) ttt yByBBe 1−=ΘΦ= ν .  In essence, these criteria state that the proper model 

has been found when the series of residuals, et , is close to white noise.  Where closeness 

is measured by some statistical criterion. 

 Some commonly used criteria are Akaike's Information Criterion, AIC, (Akaike, 

1974) which investigates the relation of a weighted sum of the variance of the residuals 

and the model order.  Pandit (1973) uses a test based on the F-distribution to compare the 

variance of residuals for competing models.  Finally, Box and Jenkins (1976) introduced 

a measure called the Q-statistic that indicates proper model order through measuring the 

autocorrelation of the residuals. 

 Most time series literature is concerned with series that contain 50 to 500 observa-

tions.  For such short records a statistical test will lead to an ARMA model with orders p 

and q well below hundred, in fact, often below ten.  For the case where the observed se-

ries is much longer, say of order 104  to 105, however, any statistical test will be restrictive 

and demand ARMA models of very large order. 

 Therefore, a new criterion for model order determination is presented that is based on 

the comparison of the observed time series and the time series obtained from a proposed 
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model.  The advantage of this scheme is that a more concise model will be obtained than 

would be if any of the above mentioned methods was chosen.  This is particularly true for 

the case where one needs to find an ARMA model for a large data set. 

 After the parameters for a number of ARMA models are estimated, a preliminary se-

lection is made based on the closeness of the power spectrum of an ARMA model to the 

spectrum of the original loading.  A generally applicable measure of association between 

two variables is provided through the correlation coefficient.  For two random variables, x 

and y, the correlation coefficient is defined via the covariance, ( )yx,cov , and standard 

deviations, σ x  and σ y , as (Miller and Freund, 1977) 

 r x y
xy

x y

= cov( , )
σ σ

     (3.26) 

while an estimator is obtained as 
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where xi  and yi  are sample points and x  and y  are estimators for the mean of the respec-

tive variables and N is the number of sample points.  This definition implies that 

− ≤ ≤1 1ρ xy  and for ρ xy = 0 observations of x and y are uncorrelated, while for ρ xy = 1 

they are identical.  In general, the nearer the value of ρ xy  to unity, the closer the resem-

blance between the two. 
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 The closeness of the power spectrum, ( )fS , of the original loading to the one ob-

tained from an ARMA model is therefore measured by their respective correlation coeffi-

cient, ( )qp
S

,ρ .  The model with the smallest number of parameters at a given correlation 

level, e.g. ( ) 8.0, =qp
Sρ , ( ) 9.0, =qp

Sρ , etc., is chosen for further study.  This allows ruling 

out a large number of models due to their lack of matching the dynamic characteristics of 

the original record.  The final model selection is based on a comparison of fatigue lives 

obtained for the original loading and a loading reconstructed using the ARMA model 

corresponding to a particular correlation level.  A criterion for this comparison is 

introduced in Chapter 4.  Unlike the rest of the time series literature, this study ties the 

step of model building directly to the application of the simulated time series. 

3.5  Nonstationarity and ARMA Models 

In many cases of structural dynamics the loadings are of nonstationary nature.  The two 

most common parameters to change with time are the mean value and the variance.  Non-

stationarity with respect to the mean value is handled through subtraction of the presumed 

mean variation.  This subtraction is commonly referred to as detrending (Box and 

Jenkins, 1976) and is usually the first step in any time series analysis.  ARMA models are 

inherently stationary descriptions of random processes.  However, attempts have been 

made to apply them to cases which involve nonstationarities, particularly for the case 

where the variance changes over time.  This is due to the fact that ARMA models were 

originally applied to earthquake loadings, which are inherently nonstationary with respect 

to their variance. 

 One method used for handling such nonstationarity is to divide the observed loading 

into segments which can be considered stationary (Chang et al., 1982).  An ARMA model 



 

 27

then is fitted to each segment.  This approach works well if it is clear how to decide on 

the length of the segment.  Applications concerned with modeling earthquake loadings 

have used this method successfully because the variance changes in a characteristic 

manner, similar for all earthquakes.  However, this approach is problematic in the case of 

rapidly changing values of variance since the segment to be considered stationary needs 

to be short, but it is difficult to obtain a reliable estimate of the ARMA parameters if the 

series is short. 

 Another approach is to estimate ARMA parameters that vary in time.  This includes 

the parameters describing the autoregressive part, the moving average part and the vari-

ance of the input white noise sequence (Gersch and Kitagawa, 1985,  Nau et al., 1982).  It 

is often difficult, however, to obtain reliable estimates for such parameters, particularly 

when only  a limited amount of data is available. 

 A third approach, chosen in this study, is to estimate a scaling function, st , which will 

model the nonstationarity with respect to variance.  The function st  is inferred from the 

observed record, xt , such that the quotient, x st t , is stationary with respect to variance 

(Hsu and Hunter, 1976;  Polhemus and Cakmak, 1981; Nau et al., 1982). 

3.6  Justification for the Use of ARMA Models 

There are four desirable characteristics of ARMA models that make them suitable for ap-

plication to random fatigue loadings of dynamically loaded structures: 

 First, the ARMA model framework allows for systematic direct analysis of discretized 
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 load records sampled at equidistant time intervals.  The complete cycle of model building 

and parameter estimation can be performed without additional knowledge of the underly-

ing dynamics of the system.  Therefore, a load model can be obtained on an empirical 

basis from observed data and regeneration performed by evaluating a system of difference 

equations.  This is in contrast to building a dynamic model of the structure via a system of 

differential equations, the equations of motion, and obtaining response data through nu-

merical integration of this system. 

 Secondly, there is a theoretical basis for using ARMA models to simulate the 

sampling of a continuous time random process.  Bartlett (1946) stated the physically 

meaningful interpretation of an ARMA model as the solution of a linear differential 

equation.  Given a linear dynamic system of order n, subjected to a white noise forcing 

function and sampled at equal time intervals, the samples will be identical to those 

obtained from an ARMA( , )n n −1  model given the right parameters φ i  and θ i .  This 

important result provides a link between dynamic systems in discrete time and continuous 

time.  Moreover, the simplicity in forming a time series via an ARMA model is not 

achieved at the cost of accuracy.  The ARMA model correctly accounts for the irregular 

behavior of the equivalent continuous time process and it is in fact more efficient to 

simulate a time series via an ARMA model than numerically integrating a differential 

equation (Nau et al., 1982). 

 Thirdly, ARMA models lead to the most concise description of a random loading of 

all proposed methods.  The level of reduction is due to the fact that the actual data are re-

placed by a model instead of being summarized through some counting method.  No arbi-

trary level of discretization needs to be imposed as necessary for the counting methods.  It 
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is rather the observed data and its inherent correlation structure that will dictate the neces-

sary number of parameters for an accurate description.  An observed record of theoreti-

cally infinite length can be characterized by a number of parameters that is usually much 

less than one-hundred and often in the range of five to twenty-five (all references in the 

literature review fall into this range).  This is in contrast to the counting methods for 

which the storage requirement depends on the desired resolution.  Typically, rainflow 

matrices are of size 32x32 or even 64x64, which translates into storage requirements of 

1024 or 4096 parameters, respectively. 

 Finally, the reconstruction of random load records is extremely efficient.  

Regeneration merely involves the backward calculation of a difference equation of low 

order.  This is in contrast to the power spectral density method, for which, for each point 

in the time series to be generated, all frequency components need to be used via a discrete 

inverse Fourier transform.  While this process has become more efficient since the 

introduction of the Fast Fourier Transform (Cooley and Tukey, 1965), it still requires 

more calculations than an ARMA reconstruction.  Moreover, truly randomly distributed 

records are obtained, whereas for the case of Rainflow reconstruction no clear method has 

evolved to achieve this.  This is particularly true for the case where more than one 

variable needs to be considered, since it is physically not clear what constitutes a cycle for 

the case of multiaxial loading. 

 On the other hand, ARMA models are problematic in their application to fatigue 

loadings for the following reasons: 
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 The procedure of model building and parameter estimation is not straightforward but 

rather iterative. 

 Moreover, practical estimation procedures are necessarily approximate.  Model order 

determination and handling of nonstationarity are areas of current research and have not 

been resolved entirely, particularly for the multidimensional case. 

 For the case of fatigue load modeling it is necessary only to obtain time series that 

consist of extreme values only.  ARMA models, however, generate time series that 

contain extremes and intermediate points necessitating removal of the intermediate points 

prior to some application. 
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CHAPTER 4.  FATIGUE LIFE CALCULATION 

 

Fatigue calculations as used in this study are presented here.  The first in depth study on 

fatigue is due to Wöhler (1858) who investigated failures in railroad axles.  Research in 

the area is still active till today, because the actual phenomenon of fatigue is still not quite 

understood. 

Failure due to fatigue occurs in two stages.  The first stage is the so called initiation 

stage, i.e., the time it takes for the loaded component to show a detectable, engineering 

size, crack.  The second stage is the crack growth stage, i.e. the time it takes for the initial 

crack to grow until final failure of the component occurs.  This study will consider only 

the life of the component until an initial crack occurs, the so called initiation life. 

 Today two approaches dominate the analysis of predicting fatigue life until the initia-

tion of cracks.  The so called stress based approach as introduced by Wöhler (1858) ana-

lyzes stresses in the component under study.  It is still the most popular method in fatigue 

analysis due to its simplicity and overall reliability.  The so called local strain approach, 

was developed in the late 1950's through early 1960's (e.g. Coffin and Tavernelli, 1959; 

Manson, 1965), an overview is being provided by Dowling et al. (1977).  The strain based 

approach concerns itself with the plastic strains occurring at the point in the material 

under investigation.  Both the local strain and stress based approaches relate the fatigue 

life of a component to the applied loads through a strain or stress versus life curve.  This 
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curve relates the number of cycles to failure for a given stress or strain range, where the 

term cycle refers to a complete reversal of stress or strain, and the range is twice the 

amplitude of this reversal.  Most materials will deform plastically under cyclic loading, 

and this plastic deformation will induce hysteresis loops, causing fatigue damage. 

Cycle counting refers to the analysis of spectrum loadings to identify  damaging hys-

teresis loops.  A variety of methods, such as peak counting, range counting, and level 

crossing counting have been proposed to count cycles, but the rainflow counting method 

introduced by Endo et al. (1974) is now the most widely accepted; see also ASTM 

(1987). 

The term cumulative damage was introduced to account for fatigue due to loadings 

where not all cycles have the same range.  This type of general irregular loading is often 

referred to as a spectrum loading.  The damage caused by a single cycle is the inverse of 

the number of cycles to failure.  To calculate the total damage for an irregular loading a 

variety of damage accumulation rules exist, e.g. Manson et al., 1967; Miller and 

Zachariah, 1977; Hashin and Rotem, 1978.  The Palmgren (1924, 1945) - Miner (1945) 

rule, which asserts that fatigue failure occurs when the summation of damage of all cycles 

reaches unity, is the best available method, Schütz (1976) concluded.  This simple rule 

works satisfactorily according to Dowling (1972) if care is taken with respect to cycle 

counting, mean stress effect of the loading, and overstrain effects. 

4.1  Uniaxial Case 

Loading situations where the applied load causes proportional stressing are the most 

widely studied.  It is for this situation, such as bending, or tension, or torsion, that the lo-
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cal strain approach was developed.  The local strain approach assumes that fatigue dam-

age is controlled by the surface strain at a critical location such as a notch.  After perform-

ing a rainflow cycle count on the loading histories, there are two possible approaches.  

They are the so called full analysis, which takes actual mean stresses into account, and the 

so called bounded life calculation, which does not consider actual mean stresses, but 

places physically meaningful bounds on the expected life. 

 Usually, the first step in the local strain approach is to convert the given nominal 

stress to a local notch stress-strain response.  This is achieved through elastic plastic 

analysis incorporating the geometry of the specimen and is well established in the 

literature, e.g. Bannantine et al. (1990), Dowling (1993), Fuchs and Stephens (1980), and 

Socie (1977).  In this study, however, the issue of obtaining the local stains is avoided by 

assuming that the recorded loading histories are the surface strain at some critical loca-

tion.  Local stresses, therefore, can be obtained directly from local strains using the cyclic 

stress-strain curve. 

 If the loading history is assumed to repeat itself, the resulting stress-strain hysteresis 

loops will consist of one major cycle due to the extreme peak and valley in the history 

and all remaining minor cycles will lie inside the major cycle.  A typical stress strain 

response for the major and a minor cycle is shown in Fig. 4.1. 

 To perform the fatigue life calculation, it is necessary to have the stable (half-life) cy-

clic stress-strain curve (Landgraf et al., 1969) and the strain-life curve for the material, 

i.e., 
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Figure 4.1. Outermost, L11, and a typical inner, Lij , stress-strain hysteresis loop. 
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where ε a  and σ a  are the strain and stress amplitudes, respectively, E is the elastic modu-

lus, N0  is the life in cycles for the case of zero mean stress, and the remaining quantities, 

′ε f , ′σ f , ′H , ′n , b, and c are material constants obtained from curve fitting experimentally 

obtained fatigue stress-strain-life data. 

 The effect of mean stress σ  on life may be estimated, for example according to 

Morrow (1968) using the following relation 
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where N is the life in cycles for the case of nonzero mean stress. 

 A particular rainflow cycle, Cij , which forms a closed local stress-strain hysteresis 

loop, Lij , such as the one shown in Fig. 4.1, with means, σ i  and ε i , and ranges, ∆σ j  and 

∆ε j , causes damage, Dij .  According to the Palmgren-Miner rule, the damage, Dij , is de-

fined as 

 D
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N
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ij
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36 

where nij  and Nij ; i, j = 1, 2, ... , M , are the numbers of  cycles counted and the number 

of cycles to failure (life) for the given cycle, Cij , respectively, and M is the number of 

equal class  intervals the loading range was divided into.  The component life, NB , is then 

calculated from the induced damage due to nij
j

M

i

M

==
∑∑

11

 rainflow cycles as 

 

1

1 1

−

= =








= ∑∑

M

i

M

j

ijB DN     (4.5) 

where NB  is given in terms of the number of blocks (repetitions) of the load history. 

4.1.1  Full Analysis 

For the case where the complete loading history is available and assumed to repeat itself 

continuously, the history may be reordered to start with the highest absolute value of 

strain.  This reordering simplifies the subsequent calculation of stress and strain for each 

cycle significantly.  Using Eqs. (4.1)-(4.3), the fatigue life for each cycle formed can be 

calculated, where it is possible to detect mean stress and strain for each cycle and account 

for their influence on fatigue life accurately.  This leads to the most accurate analytical 

life prediction currently available (MTS Systems, 1991). 

4.1.2  Bounded Life Calculation 

When the load history is reduced to a rainflow matrix, information regarding the 

sequence of loading is lost despite the fact that this sequence may affect fatigue life.  

Socie et al. (1979), therefore, motivated the idea to put bounds on the expected life of a 
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component subjected to loadings reconstructed from rain-flow matrices.  Conle and 

Landgraf (1983) submitted a complete solution to this problem, Dowling and 

Khosrovaneh (1989) and Khosrovaneh (1989) provided more detail. 

 Cycles that are identified by their range and mean value in strain then permit one to 

place bounds on the possible local mean stress for the sub-cycle, as shown in Fig. 4.1 for 

the lower bound, and in Fig. 4.2 for the upper bound.  Similar bounds may be placed on 

the local mean stresses for all rainflow subcycles.  These can then be used in two separate 

life calculations based on Eqs. (4.1)-(4.3).  These bounds represent the extremes in life 

from all possible sequence that could be reconstructed from a rainflow matrix.  A life pre-

diction according to the full analysis, will, therefore, always fall within these bounds.  It 

should be noted that these bounds are usually reasonably close and give life predictions 

that are well within the scatter of experimentally obtained results.  Moreover, for low 

strain levels, i.e. at long lives, the damage induced by small cycles becomes insignificant.  

It is the major cycle which determines almost entirely the resulting fatigue life.  The mean 

stress of the major cycle is properly accounted for and, therefore, the bounds will con-

verge to each other as the strain level is lowered. 

4.1.3  Criterion to Compare Uniaxial Fatigue Lives 

In Chapter 3 it was shown that a criterion to compare the closeness of two records with 

respect to their fatigue lives is needed.  The bounded life calculation places physically 

meaningful bounds on the life of a component.  If this calculation is applied to an original 

loading, a possible criterion is to demand that any reconstructed loading has a life, calcu-

lated according to the full analysis, which is (nearly) inside these bounds. 
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Figure 4.2. Outermost, L11, and the inner, Lij , stress-strain hysteresis loop correspond-

ing to upper bound of loop in Fig. 4.1. 
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4.2  Multiaxial Case 

Multiaxial stress or strain states occur when the loading on the structure is in more than 

one direction, or when the geometry of the component is complex.  Fatigue life calcula-

tions for a multidimensional stress or strain state are an area of current research.  No sin-

gle method has emerged as a reliable analysis tool to predict fatigue life and correlate test 

results.  Rather three different approaches are pursued and reviewed by Leese (1988). 

 The first method uses an energy based criterion to identify the amount of plastic work 

required to cause fatigue failure (Garud, 1981).  While this method gives predictions 

which agree with experimental results, it is difficult to integrate this method into design 

and testing of components.  Furthermore, for long life, only little plastic work is involved 

and the effect is difficult to quantify.  Finally, fatigue damage is induced along preferred 

directions, but an energy approach is a scalar concept thereby ignoring the physical proc-

ess. 

Another approach is based on the effective stress or strain concept as derived from 

classical theory of yield criteria.  This procedure reduces the three dimensional state of 

stress to an equivalent or effective uniaxial stress.  This effective stress then can be used 

in combination with the uniaxial local strain approach to estimate fatigue life.  Brown and 

Miller (1982) reviewed the different methods in this approach.  An advantage of this 

method is its simplicity, which makes it useful for basic engineering applications.  Also, 

this method gives good predictions in high cycle fatigue, i.e. long life.  On the other hand 

this method performs poorly in the case of nonproportional loading, i.e. where the princi-
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pal axes of stress or strain rotate during loading.  Moreover, no physical interpretation 

between the effective stress or strain and the fatigue phenomenon exists. 

The third and most recently developed method to model fatigue life is the critical 

plane approach (Brown and Miller, 1973).  This model considers the plane in the material 

on which the combined shear stress amplitude and mean normal stress, responsible for 

initiating fatigue, are most severe.  Brown and Miller (1985) point out the need for two 

critical planes to distinguish between crack initiation and crack growth.  The critical plane 

approach yields good agreement between experiment and prediction, even for nonpropor-

tional loading.  Even though a commonly agreed on criterion for defining the critical 

plane has not been found, the critical plane approach seems to be the most suitable 

approach.  This is because of its correct physical interpretation of how damage is induced 

and cracks will actually grow. 

4.2.1  Simplified Critical Plane Approach 

Juneja (1992) developed a multiaxial fatigue damage model for approximately propor-

tional loading.  This model is used in the current study to confirm the agreement in life 

for multiaxial load reconstructions, and it is therefore briefly reviewed.  The analysis, 

based on the physical interpretation of the fatigue damage process, is conducted by first 

obtaining the critical fatigue damage orientation.  The critical plane is found via a 

histogram technique, introduced by Bonnen et al. (1991).  First, the principal strain 

vectors, i.e., the principal strain values and their corresponding orientations, with respect 

to a reference orientation, are obtained for each point in the history.  A histogram of the 

principal strain values and their corresponding orientations is then formed for the entire 
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history.  Since the counts in the histogram represent the number of data points in the 

history for which a particular combination of principal strain value and respective 

orientation occurred, the distribution of these counts for a particular principal strain angle 

indicates the cycling of the strain events for that orientation.  The orientation for which 

the largest spread of principal strain values is covered with the most nonzero values in 

different bins is chosen to be the critical direction.  The fatigue cracks initiate and grow 

on this critical plane and lead to failure of the component.  After selecting the critical 

plane, the strain history is transformed along and perpendicular to this plane, and these 

are taken to be the new principal directions. 

 Two fatigue failure modes are considered.  First, an analysis investigating failure due 

to normal strain on the critical plane is performed.  The uniaxial cyclic stress-strain 

relation of Eq. (4.1) is modified to a similar form 
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where $ε a  is the effective strain and $σ a  the effective stress amplitude, respectively.  More-

over, the material constants, E , ′H , and ′n  of Eq. (4.1) are adjusted to reflect the biaxial 

state stress state on the critical plane and become En , ′Hn , and ′nn , respectively.   

 The modified strain life equation then becomes 
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where ν  is Poisson's ratio and λ  is the principal stress amplitude ratio.  

 Juneja (1992) proposes to account for mean stresses by modifying Morrow's model 

such as 
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where $σ  is the effective mean stress and $ ′σ f  the effective fatigue strength coefficient. 

 The strain life equation incorporating mean stresses according to the Smith-Watson-

Topper (Socie, 1987) model is 
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where ε a  is the principal strain amplitude and σ max  is the maximum stress on the princi-

pal strain plane during a cycle. 

 The other failure criterion considers the case where shear strains dominate the damage 

on the critical plane.  The shear strain model proposed by Socie (1987) considers the 

maximum shear strain amplitude, coupled with the tensile stress perpendicular to the 

plane of maximum shear strain, to be the damage parameter in the strain life equation.  

Including mean stress effect the strain life equation is 
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where ′γ f  is the shear fatigue ductility  coefficient, ′τ f  is the shear fatigue strength coeffi-

cient, G is the shear modulus, γ max  is the maximum shear strain amplitude, σ n  is the 

maximum tensile stress perpendicular to the maximum shear strain plane, and σ y  is the 

yield strength.  According to Socie (1987), the shorter of the two lives of Eqs. (4.9) and 

(4.10) should be taken as the most appropriate estimate of life. 

 Using the Palmgren-Miner rule, the fatigue life can be calculated for irregular 

loadings.   All three life calculations are performed in this study according to Eqs. (4.7), 

(4.9), and (4.10) and the shortest life, i.e. the most conservative estimate, will be reported. 
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CHAPTER 5.  RANDOM FATIGUE LOAD MODEL 

 

The model developed to describe fatigue random load histories is introduced here.  It is 

applicable to both stationary and nonstationary cases, and nonstationarities can be mod-

eled as being either deterministic or stochastic.  Moreover, the single channel case is in-

cluded as the limiting case of the presented multichannel model. 

5.1  Assumptions 

The time history is a superposition of a zero-mean stationary random process and events 

which affect the variation of both the mean and variance.  Mean and stationary random 

components contribute distinctly to the power spectral density (PSD) of the combined 

process.  The mean variation is of slowly varying nature and contributes only to the low 

frequency range of the PSD, while the stationary random variation, however, may affect 

the PSD at any frequency.  The variation in variance, even though also assumed to be of 

slowly varying nature, however, cannot be detected in a PSD plot of the whole history.  It 

could only be seen if the evolutionary power spectral density (Priestley, 1965), i.e., the 

PSD as a function of time, was known. 

 Mean and variance variation of each channel are assumed to be independent of the 

variations of other channels, while stationary random variations are assumed to be corre-
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lated among channels.  Moreover, the nonstationary variance and stationary random com-

ponents are independent of  each other. 

 For the cases studied, the random loadings represent actual data of the strain response 

at a given point of a vehicle traveling over a rough road.  The irregular road profile in-

duces strain, which has a stationary random nature, while maneuvers, such as steering or 

change in velocity, induce nonstationary variations in strain with respect to mean and 

variance.  The assumption of maneuvers being of slow varying nature is justified through 

the analysis of actual driving behavior (McLean and Hoffmann, 1971). 

5.2  Time Series Model 

To represent the multichannel random fatigue loading history with nonstationary mean 

and variance variation, the following model then is employed: 

 x m s nt t t t= + ⋅  (5.1) 

where ( ) ( )[ ]Tn
ttt xx K1x =  represents the underlying history, consisting of n channels, 

( ) ( )[ ]Tn
ttt mm K1m =  is the nonstationary variation in the mean value, st  is a ( )nn ×  di-

agonal matrix with elements ( )i
ts  as the scaling functions accounting for the variation in 

variance, and ( ) ( )[ ]Tn
ttt nn K1n =  a zero-mean stationary random process.  The follow-

ing sections will show how each of the components of Eq. (5.1) are modeled.  For sim-

plicity, the derivation will be shown only for the scalar components, ( )i
tm , ( )i

ts , ( )i
tn , where 

the vector and matrix expressions are obtained by combining all n components.  Also for 

convenience, the superscript i will be dropped where it is clear that a component of the 
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vector or matrix is implied.  Also, it is understood that the parameter t refers to discrete 

points in time, as this study is concerned with modeling sampled time series. 

5.2.1  Mean Description 

To minimize the number of parameters necessary to characterize the mean variation in a 

deterministic manner a truncated Fourier series is used such that 

  ( ) ( )[ ]∑ ∆+∆
mM

k
kkt tktbtktaam

1=
000 sincos+

2
1= ωω  (5.2) 

where ∆t  is the length of the sample interval, ( )tN∆= πω 20  is the fundamental fre-

quency, Mm  and N are the number of terms in the truncated Fourier series and the total 

number of sample points of the history, respectively, and ak  and bk  are the discrete 

Fourier coefficients.  For the case of ( )12/ −<< NM m , mt  will be approximating the low 

frequency content of xt , i.e., its mean variation.  The value of Mm  is found such that the 

difference between the original history and truncated Fourier series yields a process, dt ,  

which is stationary with respect to it's mean, 

 d s n x mt t t t t= ⋅ = −  (5.3) 

 To find the parameter Mm  one method is given by Buxbaum and Zaschel (1977), who 

analyze the dynamic system to decide which part of the response spectrum is due to sta-

tionary random loadings and nonstationary loadings.  Filtering in the frequency domain 

allows one to separate the two components.  This, however, is often difficult as informa-

tion regarding the dynamic system characteristics and the actual input spectrum are 
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seldom available.  Therefore, to determine whether the series dt  is indeed stationary with 

respect to its mean value, the methods of nonparametric statistics are used.   

5.2.2  Variance Description 

The remaining zero mean component, s nt t⋅ , then needs to be separated into its respective 

components.  To model the scaling function, st , in a deterministic manner, a method simi-

lar to the one for the mean description is used.  The scaling function, st , is defined as the 

function that renders the quotient d st t  stationary with respect to variance.  This is 

equivalent to saying that st  is defined as an estimator of the standard deviation of dt .  In 

order to estimate the standard deviation of dt  a procedure as shown by Nau et al. (1982) 

is employed. 

 For the zero mean time series, dt , sampled at discrete equally spaced intervals, a sim-

ple estimate, ~σ t
2 , for the true variance, σ t

2  , is obtained via a moving window such as 

 ~σ t j
j

n

t jw dn n
2

0

2

2 2
= −

=
+ −∑  (5.4) 

where n is the width of the window and the window weights,wj , are such that  

 w wj
j

n

jn−
=

= ≥∑
2

1 0
0

 (5.5) 



 48

 To determine an appropriate size, n, of the window, inference methods from classical 

statistics can be used.  Via a Chi Square test a confidence interval can be constructed 

(Miller and Freund, 1977) such as 
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where σ t
2  is the value of the true variance, ~σ t

2  is the estimated variance, and χ αn−1
2

,  indi-

cates the Chi Square distribution with (n −1) degrees of freedom at confidence level α .  

For an acceptable relative maximum error of 25% the following must hold 

0 75 1252 2. ~ .≤ ≤σ σt t .  These bounds, with a chosen value of α = 0 9. , require a minimum 

number of n = 96, therefore, a value of n = 100 is chosen to accurately estimate the true 

variance, σ t
2 .  For other confidence levels and relative maximum errors see Table 5.1.   

 The simplest weighting function is the rectangular one, i.e. ( )11 += nwj .      How-

ever, it is usually preferable to use a more gradually varying window, such that neighbor-

ing points have a stronger influence on the estimate of the variance than points that are 

further away from the current observation.  Nau et al. (1982) use a cosine bell shaped 

window, while in this study, for simplicity, a triangular window is introduced such that 
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 Nau et al. (1982) show that the estimate of the variance via Eq. (5.4) tends to be bi-

ased in a systematic way.  Peak values in variance will be underestimated, while 
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Table 5.1. Chi-Square distribution confidence intervals. 
 
 
 
 

  n - sample size 
 error α = 0.98  α = 0.95  α = 0.90  
 10% 1024 731 519 
 20% 274 193 134 
 25% 196 138 96 
 30% 132 93 64 
 40% 79 56 38 
 50% 54 38 26 

 
 
 
 
 
 
Table 5.2. Student's t-distribution confidence intervals. 
 
 
 
 

  n - sample size 
 error α = 0.98  α = 0.95  α = 0.90  
 10% 451 320 226 
 20% 126 90 64 
 25% 90 63 45 
 30% 60 43 31 
 40% 36 26 19 
 50% 25 18 13 
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rate estimate a correction could be introduced to account for this known deviation.  How-

ever, as a concise, and therefore only approximate, description of the variance is desired, 

no further refinement is performed. 

 ~σ t  then gives an estimation of the standard deviation of dt  and can, therefore, be used 

to derive an estimate for the scaling function, st . 

 The next step is to concisely represent the standard deviation, ~σ t .  The fact that ~σ t  is 

not evenly distributed makes it difficult to postulate models that would describe it.  

Therefore, a transformation due to Box and Cox (1964) is commonly used to enhance 

symmetry 
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where ~σ t
BC  indicates the Box Cox transform of ~σ t .  The parameter λ  of this power 

transformation leads to a logarithmic transformation for λ = 0 and to no transformation 

for λ = 1.  The parameter λ  is chosen such that the transformed series has zero skewness, 

i.e. it becomes symmetrically distributed about it's mean, in order to facilitate modeling 

by a harmonic function.  If more than one value of λ  fulfills this criterion, the 

transformed time series corresponding to these values of λ  are obtained and their 

respective mean and variance are calculated.  The distribution of the transformed series 

are compared to normal distributions with the given values of mean and variance for each 

λ .  A normalized error, ε , between the frequency histogram of the transformed series and 

the probability density function (pdf) of the corresponding normal distribution is obtained 

according to Ang and Tang (1975) as 
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where, I denotes the number of intervals the total range of ~σ t
BC  was divided into, hi  indi-

cates the relative frequency of a certain value of ~σ t
BC , and fi  indicates the magnitude of 

the pdf evaluated at the same value of ~σ t
BC .  The value of λ  that leads to the minimum 

error, ε ,  is chosen as the optimal parameter. 

 In this study, the scaling function, st , is a truncated Fourier series 
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where as before ∆t  is the length of the sample interval, ( )tN∆= πω 20  is the fundamental 

frequency, Ms  and N are the number of terms in the truncated Fourier series and the total 

number of sample points of the history, respectively, and ck  and dk  are the discrete 

Fourier coefficients.  For the limiting case where ( )12 −= NM s , st
BC

t
BC= σ , while for 

( )12 −< NM s , st
BC  is an approximation of σ t

BC  leading to st  as a suitable scaling func-

tion.  The value of Ms  is found such that st
BC  and σ t

BC  have a prescribed correlation coef-

ficient of ρ s
Ms = 0 95. .  Ms  is much smaller than ( )12/ −N , since the variation in variance 

has been calculated via an average and is therefore of slowly varying nature. 

5.2.3  Random Component Description 

The remaining stationary random component, nt , can be represented by an ARMA model 

of appropriate order.  A vector ARMA model is employed to account for correlations 

among components, ( )i
tn , of n t .  No commonly agreed on approach of model selection for 
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vector ARMA models has been found.  In this study, therefore, the criterion of model or-

der selection will be identical for both single- and multi-channel case.  The selection of 

the proper ARMA model is made such that a parsimonious model is chosen according to 

Section 3.4. 

5.3  Nonparametric Statistics 

In order to determine whether a sequence of observations is of random nature, statistical 

tests can be performed.  Observations can be either individual events, or a common 

measure of a collection of events, such as the interval mean, µ i , for a given i-th interval 

of a history.  If no information about the distribution function of the sequence is available, 

a nonparametric test is desired because no assumptions regarding distributions are neces-

sary.  In nonparametric inference, the methods are based only on the relative occurrence 

of an underlying event.  Therefore, information or assumptions regarding the underlying 

population are not necessary to assess whether a sequence is of random nature or contains 

deterministic trends (Gibbons, 1971). 

 Three nonparametric tests are presented here to determine the stationarity of dt  with 

respect to the mean value.  In general, given a time series of length N, one divides this se-

ries into NI  intervals each containing N P  points, such that N N NI P= × .  The means are 

calculated for each interval, µ i , where ( )INi  ,  ,2 ,1 K= , and are considered as the se-

quence of observations to be tested for randomness. 

 These intervals need to be sufficiently long to give reliable estimates for the mean, yet 

short enough to be able to detect variations in the mean of the whole record.  Further-

more, for proper statistical analysis, it is desirable to treat the estimates of the interval 
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means as if they were uncorrelated to each other.  No common rule has been established 

in the literature as to what this interval length should be.  An argument to support the 

choice of interval size, however, can be made using inference methods from classical 

statistics.  To establish the necessary number of data points to estimate the interval mean, 

µ i ,  a Student's t-test can be used (Miller and Freund, 1977) 
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where xi  is the estimated interval mean, Si  is the square root of the unknown interval 

variance, and t N Pα , −1 indicate Student's t-distribution with α  level of confidence and 

N P −1 degrees of freedom.  An expression indicating the relative maximum error in 

estimating µ i  can be derived as 

 relative maximum error = − ≤ −x
S

t
N

i i

i

N

P

Pµ α , 1   (5.12) 

 For a chosen value of α = 0 9.  and an acceptable relative maximum error of 25% in es-

timating µ i , the required minimum number of sample points is N P = 45 leading to the ac-

tual choice of N P = 50 for other confidence levels and relative maximum errors see Table 

5.2. 

 The first test is based on the variable RT , the total number of runs.  A single run is de-

fined as successive observations of the interval mean or interval standard deviation below 

or above the median and is completed when two succeeding observations are separated by 

the median.  This is the best known and most general run test.  The test is focused on a 

single quantity, the median, and gives a general measure of randomness or lack thereof 



 54

without identifying trends or cyclical pattern.  Hald (1952) derives the mean and variance 

for the expected number of runs for a true random sequence.  For the case where the total 

number of runs, RT , is larger than twenty, the distribution of RT  is approximately normal.  

For a sequence of length NI , the expected value and variance for RT  then are defined as, 

(Hald, 1952) 
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 Confidence limits for the expected number of runs can be established.  A hypothesis 

test is based on the comparison of the observed number of runs, rT , and the theoretically 

expected number of runs, µ RT
.  Confidence limits at level α  are defined as (Hald, 1952) 

 ( ) ( )
TTT RTRRT zrzr σµσ αα 22 +≤≤−  (5.15) 

where zα 2  is defined such that 
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 If the observed number of runs, rT , falls inside the confidence limits, Eq. (5.15), for a 

chosen confidence level, usually α = 0 95. , the hypothesis of the sequence being random is 

accepted, while for the case where rT  falls outside these limits the observed sequence 

must be considered deterministic. 
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 The second run test is based on the variable for the length of the longest run, K.  In a 

random sequence of length NI , the longest of the runs described above follows the rela-

tion (Hald, 1952) 
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 Since Eq. (5.17) cannot be solved directly for K, the test is indirect.  The hypothesis 

test at confidence level α  for the observed longest run requires checking whether the se-

ries is sufficiently long to admit a run of observed length, k, in a random sequence of 

length NI .  This test is best suited for identifying trends in a sequence. 

 Finally, tests based on the number of runs up and down, RUD , provide another 

measure of randomness of a sequence of interval means.  The magnitude of each 

observation is compared with that of the immediately preceding observation.  If the next 

element is larger, a run up is started, and if smaller, a run down.  A decision concerning 

randomness then is based on the number of these runs, while the length is not considered.  

This test traces the whole sequence of observations relative to each other, in contrast to 

the test based on the total number of runs.  Therefore, a periodic fluctuation (cyclic 

content) of the observed sequence can be detected through the number or runs up and 

down.  A hypothesis test can be derived for measuring whether the observed number of 

runs, rUD , significantly deviates from the expected value, µ RUD
, for a random sequence.  



 56

The expected value and variance of the number of runs up and down for a random 

sequence of length NI  are (Hald, 1952) 
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 Confidence limits at level α  are defined as 
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 Each run test detects a certain form of deviation from the case of a random sequence.  

Too few runs, runs of excessive length, or too many runs can be used as statistical criteria 

for the rejection of the hypothesis of randomness of the sequence µ i . Therefore, all tests 

should be considered, and need to be passed successfully, for the sequence dt  to be con-

sidered stationary with respect to its mean. 

5.4  Ensemble Generation 

Successful load modeling for the purpose of realistic fatigue testing asks for an ensemble 

of load histories where each realization (history) is representative of the actual loading.  

In practice, it is often difficult to obtain sufficient information about the ensemble.  It is 

common to have only a limited number of representative records for a particular loading 

situation.  Therefore it is desired, given a single loading, to obtain a large number of reali-

zations which are not identical, but contain variations which have statistical 

characteristics identical to the original history. 
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 The proposed model of Eq. (5.1) allows for an extension from a single observed re-

cord to an ensemble in all its components.  The ARMA models employed to account for 

the stationary variations of the loads are of stochastic nature.  It is not a single time series 

that is embodied in a particular set of ARMA parameters, but a random process, which 

for each generation yields a different realization with identical stochastic characteristics, 

but a different sequence and values of relative extrema. 

 The ensemble of mean and variance variations can be obtained using a method intro-

duced by Rice (1944).  It is shown that a time series, yt , of a random signal can be de-

scribed by its discrete Fourier transform 
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where gk  and hk  are Fourier coefficients, ω 0, ∆t , and N were defined above, and ηk  and 

τ k  are two random phase angles distributed uniformly over the interval ( )π2 ,0 . 

 This presentation yields an ergodic random process, i.e., a process that is stationary, 

such that an average taken over time is identical to an average taken across the ensemble 

of histories.  Histories with a different variation for each simulation of Eq. (5.22) are ob-

tained, yet the overall characteristics, such as the frequency content and variance, are pre-

served.  A stochastic description of the process yt  is obtained. 

 This formulation of a random process can be used to derive an ensemble of mean and 

variance variations by modifying the mean description in Eq. (5.2) and the scaling 

function in Eq. (5.9) in two ways.  First, similarly to Eq. (5.22), random phase angles are 

added to each term of Eqs. (5.2) and (5.9).  This leads to presentations which preserve the 
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spectral content, but the sequence of events, i.e. the occurrence of a relative or absolute 

maximum, will be different for each simulation.  While these records are statistically 

identical, it might be desirable to obtain mean and variance variations which will have a 

prescribed similarity (correlation) to the deterministic descriptions.  This would yield 

more realistic load simulations as the sequence of major events, such as relative extrema, 

can be preserved to any desired degree. 

 This objective leads to a second modification of Eqs. (5.2) and (5.9).  The prescribed 

correlation between deterministic description and the ensemble is obtained through limit-

ing the number of terms which carry a random phase angle in Eq. (5.22).  Instead of ηk  

and τ k  being random phase angles for all k, ηk  and τ k  will be restricted such that 
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and the ensemble description becomes 
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where NZ  indicates the number of terms with zero phase angles and U indicates the uni-

form distribution defined on the interval ( )π2 ,0 .   

 From a strict theoretical standpoint, the random process of Eq. (5.24) with the defini-

tion of ηk  and τ k  of Eq. (5.23) yields a non-ergodic process.  This is due to the fact that 

the process contains deterministic components, i.e., terms with zero phase angles.  How-

ever, the proposed method of using a limited number of random phase angles conserves 

the frequency content of the deterministic variation. 



 59

5.4.1  Ensemble Mean 

Given the deterministic mean description of Eq. (5.2) and the derivation of an ensemble 

of Section 5.4, the ensemble of mean variations becomes 
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with the random phase angles such that 
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 In order to measure the closeness between the deterministic description, mt  and a 

simulated mean mt
NZ

m

, the correlation coefficient, ρm
NZ

m

, is obtained. 

5.4.2  Ensemble Variance 

An ensemble of variance variations can be derived in an analogous manner as the one for 

the mean description.  The Fourier series to describe the scaling function, st , will be aug-

mented by random phase angles, which in turn will be restricted according to the desired 

correlations between deterministic and stochastic scaling functions. 

 Given the Box-Cox transformation of the deterministic scaling function of Eq. (5.9) 

and the derivation of an ensemble of Section 5.4, the ensemble of Box-Cox transformed 

scaling functions becomes  
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with the random phase angles such that 
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 As for the mean ensemble the closeness between the deterministic description, st  and 

a simulated scaling function, st
NZ

s

, is measured by their respective correlation coefficient, 

ρ s
NZ

s

. 
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CHAPTER 6.  STUDIES OF UNIAXIAL LOADINGS 

 

Three fatigue loading histories which represent data collected in field experiments were 

provided by the sponsor and are investigated.  These histories are strain gauge measure-

ments taken on a front suspension component.  A fourth history was obtained by 

removing the variation in variance of one of these histories, yielding a history stationary 

with respect to variance, but nonstationary with respect to its mean.  According to earlier 

stated assumptions, these records are considered to represent local strain data, collected at 

a critical location such as a notch, and, moreover, they are assumed to have been sampled 

at one point per second.  Moreover, all records have been normalized without loss of 

generality such that their overall mean value is zero and their dimensionless root mean 

square (RMS) value is equal to unity.  Basic statistics of original and reconstructed 

records are shown in Table 6.1.  Some of these loadings exhibit a beginning that does not 

contain much variation.  This can be explained by the fact that the vehicle started from 

rest and loads are consequently small.  All fatigue life calculations are based on the mate-

rial properties of SAE 1045 steel, stated in Table 6.2. 

6.1  Stationary Mean and Variance 

For the purpose of life analysis, a typical block of stationary zero-mean, constant variance 

strain-gauge data (22,592 observations) is chosen to represent the random fatigue load 
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Table 6.1. Statistics of original loadings and respective reconstructions. 
 
 
 
 

 Stationary Mean and Variance Nonstationary Mean Nonstationary Variance Nonstat. Mean and Variance 
 Original Reconstruction Original Reconstruction Original Reconstruction Original Reconstruction

 Mean 0.0 9.653E–5 0.0 – 2.647E–3 0.0 – 0.017 0.0 – 0.013 
 Variance 1.0 1.014 1.0 0.985 1.0 1.028 1.0    0.985 
 Skewness – 0.131 – 7.583E–3 – 0.307 – 0.198 – 0.141 – 0.003 – 0.361 – 0.232 
 Minimum – 4.784 – 4.132 – 3.785 – 3.884 – 6.076 – 7.096 – 3.931 – 3.253 
 Maximum 3.956 4.187 2.866 3.052 6.064 7.927 2.754 3.292 
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Table 6.2. Material properties for SAE 1045 steel, Kurath et al. (1989). 
 
 
 
 
Modulus of Elasticity, E 202000   MPa 29297      ksi 
Yield Strength, σ Y  380   MPa 55.1   ksi 
Ultimate Strength, σ U 621   MPa 90.3   ksi 
Fatigue Strength Coefficient, ′σ f   948   MPa 138      ksi 
Cyclic Strength Coefficient, ′H  1258   MPa 182      ksi 
Cyclic Strain Hardening Exponent, ′n  0.208 
Fatigue Strength Exponent, b – 0.092 
Fatigue Ductility Coefficient, ′ε f  0.260 
Fatigue Ductility Exponent, c – 0.445 
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history in this study.  A portion of this load history is shown in Fig. 6.1, and its corre-

sponding power spectral density is plotted in Fig. 6.2. 

 Various orders of ARMA models are employed for the reconstruction of an 

equivalent history and are compared for the best model.  Table 6.3 gives the 

autoregressive and moving average parameters, φ i ; i=1, 2, ..., p, and θ i ; i=1, 2, ..., q, for 

each ARMA model together with the variance of the white noise, σ e
2 .  It is observed that 

the variance of the white noise decreases rapidly with increasing model order, indicating a 

better fit of the model to the data.  The values of ARMA parameters for different models, 

however, do not exhibit any distinct pattern.  Moreover, Table 6.4 shows the correlation 

coefficient between the power spectral density for the original record and power spectral 

densities obtained from the closed form presentation of Eq. (3.7) for various ARMA 

models.  It can be seen, that, with increasing model order, the variance of the white noise, 

σ e
2 , and the correlation coefficient between the spectra does not monotonically decrease.  

This is due to the fact that increasing the model order can lead to overfitting, i.e. 

estimating of higher order models that in fact give a poorer fit than a lower order model. 

 Power spectral densities for ARMA(1,0), ARMA(2,1) and ARMA(3,1) models are 

shown in Fig. 6.2.  It is noted that ARMA(0,0) is a stationary random process with a nor-

mally and independently distributed variable, i.e. white noise, having a constant power 

spectral density with a unit area.  It is obvious that the lower order ARMA models, 

ARMA(0,0), ARMA(1,0), and ARMA(2,1), are inadequate in describing the stochastic 

characteristics of the original loading.  This is due to the fact that these models do not in-

clude a sufficient number of parameters to reflect the correlation structure of the original 

record.  The power spectral density for the ARMA(1,0) model is a monotonically decreas-
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Figure 6.1.  Time series plots for portion of (a) original history, (b) ARMA(0,0), (c) 

ARMA(1,0), (d) ARMA(2,0), (e) ARMA(2,1), and (f) ARMA(3,1) re-
constructions - stationary case. 
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Figure 6.2. Power spectral densities for original and selected ARMA reconstructed 

histories - stationary case. 
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Table 6.3. ARMA parameters and variance of white noise input for selected ARMA models - stationary case. 
 
 
 
 
ARMA(p,q)  (0,0)  (1,0)  (2,0)  (2,1)  (3,0)  (3,1)  (4,0)  (5,0)  (5,4)  (6,0)  (8,0)  (10,0) 

 φi ; i = 1  0.836 1.596 1.548 2.226 1.927 2.495 2.548 3.327 2.625 2.639 2.703 
 2   0.909 0.875 – 2.014 – 1.540 – 2.799 – 3.031 – 4.885 – 3.349 – 3.405 – 3.630 
 3     – 0.692 0.422 1.559 2.006 3.997 2.706 2.854 3.283 
 4       – 0.390 – 0.806 – 1.796 – 1.776 – 2.096 – 2.684 

 5        0.172 0.351 0.950 1.462 2.147 
 6          – 0.297 – 0.809 – 1.550 
 7           0.283 1.025 
 8           – 0.059 – 0.652 
 9            0.308 
 10            – 0.072 
 θi ; i = 1    – 0.873  – 0.774   0.721    
 2         0.190    
 3         – 0.577    
 4         0.200    

 σe
2  1.000 0.3010 0.0519 0.0232 0.0271 0.0198 0.0230 0.0228 0.0274 0.0202 0.0206 0.0192
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Table 6.4. Correlation coefficient of power spectra, ρ S
p q( , ) , for selected ARMA(p,q) 

models, where the bold number indicates the minimum order model for a 
given correlation value - stationary case. 

 
 
 
 

p
q

0 1 2 3 4 5 6 

1 0.22       

2 0.84 0.87      

3 0.74 0.92 0.77     

4 0.94  0.94 0.90 0.83    

5 0.91 0.91 0.90 0.86 0.95   

6 0.87 0.84 0.84 0.8 0.90 0.95  

7 0.93 0.93 0.91 0.88 0.94 0.95 0.95 
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ing function that overestimates and underestimates the distribution of the power in the 

low and high frequency ranges, respectively.  For the higher order ARMA models, the 

resulting spectral densities are similar to that of the original loading history, which is 

characterized by having most of its power concentrated around the critical frequency of 

f ≈ 0 09. Hz.  

 To compare models with respect to fatigue relevant characteristics, the distributions 

of rainflow cycles and the predicted component fatigue lives are investigated.  In order to 

eliminate any bias toward any particular load history, the rainflow cycles and the compo-

nent fatigue lives corresponding to each ARMA model are taken as the ensemble average 

of one hundred independently reconstructed histories. 

 For the purpose of rainflow cycle counting, the maximum range for the normalized 

original and ARMA reconstructed histories is set equal to 10, extending from –5 to 5.  

Such a range is chosen to be large enough so that the probability of it being exceeded by 

the reconstructed data is almost zero.  This range is then divided into 32 equal class inter-

vals of width 0.3125.  Figure 6.3 shows the range-mean histograms of rainflow cycles for 

the original history and for the reconstructed histories by ARMA(0,0), ARMA(1,0), 

ARMA(2,1), and ARMA(3,1) models.  The distributions of rainflow range mean histo-

grams for the lower order models such as ARMA(0,0) and ARMA(1,0) are shown to be 

substantially different from that of the original history.  Because the correlation among 

the consecutive data points is relatively low, these two lower order models describe 

sequences of peaks and valleys that are interrupted by only a small number of 

intermediate points.  As a result, a much larger number of rainflow cycles with a smaller 

range is formed.  Furthermore, it is also observed that the number of rainflow cycles with larger ranges is over-
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estimated by the ARMA(0,0) model while it is underestimated by the ARMA(1,0) model.  

The distributions of rainflow cycles for reconstructions corresponding to the higher order 

ARMA models are found to be similar to that of the original history.  However, the distri-

bution for the original history is irregular, whereas those for the ARMA reconstructions 

are relatively smooth due to averaging the one hundred sample histories. 

 In the following analysis, the variations of fatigue life as a function of RMS strain 

level, ε RMS , are considered, the so called strain life curve.  Consequently, the strain histo-

ries corresponding to various RMS levels are required.  Because the original loading is of 

unit RMS value, this can be accomplished by simply multiplying the normalized history 

with the desired RMS value.  Strain life curves for original loading and average values of  

one hundred ARMA reconstructions are shown in Fig. 6.4. 

 For low cycle fatigue, the component life for ARMA(3,1) reconstructed history is 

shown to be in good agreement with that for the original history.  The fatigue life due to 

ARMA(0,0) reconstructed histories is the shortest.  This is because the ARMA(0,0) 

model does not only overestimate the rainflow cycles with a smaller range but also those 

with an intermediate and larger ranges.  In spite of the result shown earlier which 

indicates that the largest number of rainflow cycles is formed by the ARM(1,0) 

reconstructed histories, the longest fatigue life is predicted.  This can be explained by the 

fact that the distribution of the resulting cycles is biased toward those with a smaller 

range for which the resulting damage is insignificant.  Higher order models, however, 

approximate the fatigue life better.  It is noted that strain life curves for ARMA(2,0) and 

ARMA(5,4) overlap with the ones for ARMA(2,1) and ARMA(3,1), respectively. 
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Figure 6.4. RMS strain level, ε RMS , versus blocks to failure, NB , for original and selected ARMA reconstructed histories - 

stationary case. 
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 For high cycle fatigue, the calculations indicate that the predicted fatigue lives for the 

original and for ARMA reconstructed records are in good agreement.  When the compo-

nent life becomes relatively large, i.e. NB > 103 blocks, all the reconstructed histories re-

sult in longer predicted life than that for the original loading.  For these particular RMS 

stain levels, the damage is mainly the result of those hysteresis loops with the largest 

ranges.  It is observed that all the proposed ARMA models slightly underestimate the 

number of rainflow cycles with such ranges. 

 The damage histograms for the original and for ARMA(0,0), ARMA(1,0), and 

ARMA(3,1) reconstructed histories are shown in Fig. 6.5 for the RMS strain level 

ε RMS = 01%. .  At this RMS strain level, the rainflow cycles with a small range contribute 

an insignificant percentage of damage.  As a result, the shortest and longest fatigue lives 

are predicted when the expected load history is described by ARMA(0,0) and 

ARMA(1,0) models, respectively. 

 According to the selection criterion outlined in Section 3.4, ARMA models of mini-

mum order whose power spectra have a specific correlation value, ρ S
p q( , ) , to the spectrum 

of the original are considered for further analysis with respect to fatigue life.  Models with 

correlations of ρ S
p q( , )  greater or equal than 0 8. , 0 85. , 0 9. , and 0 95.  are sought.  The re-

spective minimum order models can be read from Table 6.4 and are ARMA(2,0) with 

ρ S
( , ) .2 0 084= , ARMA(2,1) with ρ S

( , ) .2 1 087= , ARMA(3,1) with ρ S
( , ) .3 1 0 92= , and 

ARMA(5,4) with ρ S
( , ) .5 4 0 95= , respectively.  It can also be seen from Table 6.4 that in-

creasing the model order beyond ARMA(5,4) does not lead to better fitting models. 

 The model of lowest order for which the strain life curve falls within the bounds of life  
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of the original is the ARMA(3,1) model, shown in Fig. 6.6.  Therefore, according to the 

criterion of closeness with respect to fatigue life, the ARMA(3,1) model is chosen to be 

the most concise model that matches the fatigue life of the original loading with appropri-

ate accuracy. 

 The application of random load history modeling for numerical analysis, such as 

Monte Carlo studies, and laboratory fatigue testing, generally requires a large number of 

load reconstructions.  As a result, it is desirable that the proposed model has a high degree 

of consistency in terms of reproducing load histories which have identical statistical 

properties to the original.  In other words, the variations of fatigue life of the same 

component subjected to various reconstructed load histories should be minimal.  

Statistical variations of the component fatigue life based on an ensemble of one hundred 

independently reconstructed ARMA(3,1) histories are plotted in Fig. 6.7 as a function of 

the RMS strain level, ε RMS .  Shown are the mean average life, NB , the mean lower bound 

life, NB
L , and the mean upper bound life, NB

U .  Furthermore, a band formed by the lines 

NB
L

NB
L− 3σ  and NB

U
NB
U+ 3σ , where σ

NB
L  and σ

NB
U  are the standard deviations of the lower 

bound and upper bound lives, respectively, is also given for measuring the degree of 

dispersion of the data.  It is noted that the total probability that a given point to be within 

plus and minus three standard deviations from the mean value is approximately 99.7%.  

Because the resulting band is relatively narrow, only slight variation in the predicted 

fatigue life is to be expected.  The variation reflects the fact that the loading history is of 

stochastic nature.  In the subsequent studies, rainflow and damage histograms will be 

obtained for only one reconstruction, as the variability between reconstructions is small 

for histories of reasonable length. 
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Figure 6.6. RMS strain level, ε RMS , versus blocks to failure, NB , for original and selected ARMA reconstructed histories -

stationary case. 
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Figure 6.7. Statistical variations of fatigue life resulting from an ensemble of 100 independently reconstructed ARMA(3,1) 

histories - stationary case. 
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6.1.1  Experimental Verification 

Juneja (1992) reported the results of an experimental verification of the proposed load 

modeling method.  Unnotched axial test specimens were made of SAE 1045 steel from 

the same lot of material, where the material constants, Table 6.1, were the same as used in 

the life calculations from the previous section.  The specimen were subjected to the 

original loading history at five different RMS strain levels, and similarly to three 

reconstructions, namely ARMA(0,0), ARMA(1,0), and ARMA(3,1), where these 

histories are shown in Fig. 6.1. 

 The number of blocks to failure, NB , are shown for each test in Fig. 6.8.  The 

ARMA(0,0) reconstructed history gave lives shorter than those for the original history, 

and the ARMA(1,0) reconstruction gave longer lives.  The ARMA(3,1) reconstruction 

lives were closest to those for the original history at all five strain levels, being slightly 

longer but within a factor of two.  The trends in life for the various reconstructions was in 

agreement with the calculated life of the previous section.  However, the actual lives were 

shorter than predicted, especially at the lower RMS strain levels.  A possible explanation 

for this is that cycles at the intermediate and lower levels within a given strain history 

often cause more fatigue damage than expected due to an interaction effect with the most 

sever cycles.  Also, the material properties of the provided specimen may have deviated 

from the reported values as they were not confirmed through tests.  Finally, a variation in 

material properties within the lot of steel bar provided is a possible cause for the 

deviation of prediction and test results. 

 The most significant result obtained, however, is that the ARMA(3,1) model and the 
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Figure 6.8. RMS strain level, ε RMS , versus blocks to failure, NB , for unnotched axial test specimen of SAE 1045 steel sub-

jected to the original and three ARMA reconstructed histories - stationary case.  Calculated lives from Fig. 6.4. 
are also shown as solid lines. 
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 original loading agreed reasonably with respect to fatigue life. 

6.2  Nonstationary Mean 

A typical history of nonstationary strain gauge data is chosen as the random fatigue load 

history in this study, Fig. 6.9a, where a variation in variance was removed prior to this 

study.  This history, containing 10240 points, constitutes one block.  Its power spectral 

density is shown in Fig. 6.10. 

 According to the employed model of Eq. (5.1), the history is decomposed into its two 

components, mt  and nt , where it is assumed that the scaling function, st , is constant.  In 

order to model the variation of the mean, mt , in a deterministic way various Fourier series 

with increasing numbers of terms are formed, giving the tentative mean descriptions.  The 

difference, nt , of the original record and each mean description is obtained.  These differ-

ences are then analyzed for deviations from being a zero-mean process.  The best mean 

description is chosen as the one that renders nt  stationary using the Fourier series with the 

least number of terms. 

 In order to analyze the mean-removed record, nt , it is divided into NI  intervals each 

of which contains, according to Section 5.3, NP = 50 points.  This leads to NI = 204  

intervals, for each of which the interval mean is determined.  As 10240 cannot be evenly 

divided by 50, the first and last 20 points in the series are ignored for the run tests. 

 Run tests based on the total number of runs, the number of runs up and down, and the 

length of the longest run, are performed on the sequence of interval means calculated from 
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Figure 6.9. Time series plots for (a) original history, (b) deterministic mean 

representation with Mm = 35, (c) stationary series, (d) ARMA(5,0) model 
simulation, and (e) reconstruction - nonstationary mean case. 
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Figure 6.10. Power spectral density for original history and a history reconstructed with 

Mm = 35 and ARMA(5,0) - nonstationary mean case. 
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nt .  This assures that a variety of deviations from the expected random behavior of this 

sequence can be detected. 

 Confidence intervals for run tests at levels α = 0 90. , α = 0 95. , and α = 0 98.  are 

shown in Table 6.5, where α = 0 95.  is chosen as the level at which run tests will be 

performed.  For the case where NI = 204 , the 95% ( )95.0=α  confidence limits for the 

total number of runs are ( )11689 <<
TR

µ , while the number of runs up and down covers 

the range ( )147123 <<
UDR

µ .  The length of the longest admissible run, according to 

Eq.(5.17) for a random sequence of length 204, is K=6. 

 The only value for which all run tests are passed is Mm = 35.  Therefore, a total num-

ber of Mm = 35 Fourier series coefficients is deemed appropriate for a sufficient mean de-

scription to render the remaining signal stationary with respect to its mean value.  See 

also Fig. 6.9b for the deterministic mean model, mt , and Fig. 6.9c, for the mean removed 

record, nt , and Fig. 6.11 for the power spectral density of the stationary series. 

 The stationary sequence will be presented by an ARMA model.  Parameters for a 

number of ARMA models are estimated and the correlation coefficients between power 

spectra of these ARMA models and the spectrum of the stationary series are calculated, 

and are shown in Table 6.6.  Seeking models which have correlations of ρ S
p q( , )  greater or 

equal than 0 8. , 0 85. , 0 9. , and 0 95.   leads to the following choices of respective minimum 

order models: ARMA(5,0), ARMA(5,2), ARMA(9,0), and ARMA(10,0).  Power spectral 

densities for ARMA(5,0) and ARMA(10,0) are shown in Fig. 6.11.  The area under the 

PSD of both ARMA models is approximately the same as the area under the PSD of the 

stationary series.  However, the peaks of the stationary series are much better modeled by 



 84

Table 6.5. Results of run tests for different values of Mm  for α = 0.95  (italics = 
failure of test, bold passed all tests ) - nonstationary mean case. 

 
 
 
 

 
 NI = 204  
 α = 0.90  91<rT <114 125<rUD<145 k≤5 
 α = 0.98  86<rT <119 121<rUD<149 k≤6 
 α = 0.95  89<rT <116 123<rUD<147 k≤6 
 Mm  rT  rUD  k 
  5 35 102 8 
 10 67 100 8 
 15 77 112 6 
 20 77 108 7 
 25 91 108 5 
 30 99 114 4 
 35 109 132 4 
 40 104 116 4 
 45 130 138 5 
 50 141 146 3 
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Figure 6.11. Power spectral density for the stationary series and two ARMA models, 

where for ARMA(5,0) ρ S
( , ) .5 0 081=  and for ARMA(10,0) ρ S

( , ) .10 0 0 96=  - 
nonstationary mean case. 
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Table 6.6. Correlation coefficient of power spectra, ρ S
p q( , ) , for selected ARMA(p,q) 

models, where the bold number indicates the minimum order model for a 
given correlation value - nonstationary mean case. 

 
 
 
 

p
q

0 1 2 3 4 5 6 7 8 9 

1 0.52          

2 0.50 0.57         

3 0.59 0.64 0.70        

4 0.76 0.77 0.82 0.83       

5 0.81 0.81 0.85 0.85 0.84      

6 0.83 0.83 0.84 0.84 0.85 0.85     

7 0.81 0.81 0.82 0.83 0.84 0.84 0.83    

8� 0.71 0.70 0.76 0.76 0.83 0.83 0.83 0.86   

9 0.90 0.92 0.95 0.95 0.97 0.97 0.98 0.98 0.98  

10 0.96 0.96 0.97 0.96 0.98 0.98 0.98 0.98 0.96 0.97

11 0.93 0.94 0.95 0.95 0.97 0.98 0.97 0.97 0.96 0.96

12 0.93 0.93 0.94 0.94 0.97 0.97 0.96 0.97 0.97 0.97
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 the ARMA(10,0) model than by the ARMA(5,0) model. 

 Reconstructions are formed for all of these ARMA models and added to the determi-

nistic mean description.  Strain life curves are obtained for the original loading, where the 

bounded life calculation was performed, and for various ARMA reconstructions, Fig. 

6.12, where 64 independent reconstructions were performed and averaged to eliminate 

any bias introduced by a particular reconstruction.  Note that strain life curves for recon-

structions of ARMA(5,0), ARMA(5,2), ARMA(9,0), and ARMA(10,0) overlap, there-

fore, the lowest order model, ARMA(5,0), is deemed appropriate for load reconstruction.  

Strain life curves are also shown for ARMA(0,0) and ARMA(1,0), where it is noted that 

they constitute, as in Section 6.1, the limiting cases of all ARMA reconstructions  that 

were studied.  ARMA(0,0) leads to the shortest life, while ARMA(1,0) leads to the long-

est life predicted.  Moreover, it is noted that ARMA(0,0) and ARMA(1,0) are closer to 

the bounds of the original than it is the case of the stationary loading in Section 6.1.  This 

can be explained by the fact that, for this case, where the mean variation varies apprecia-

bly, the stationary random component's contribution to fatigue life is less than that for the 

case of a purely stationary loading.  In other words, any bias introduced by an inappropri-

ate ARMA model influences the reconstruction less when a deterministic mean variation 

is present. 

 The complete reconstruction, using the stationary record obtained from the selected 

ARMA(5,0) model shown in Fig. 6.9d, and using the deterministic mean representation, 

is shown in Fig. 6.9e.  To demonstrate the consistency of the reconstruction, Fig. 6.13 

shows five independently simulated records.  The power spectral density of the recon-

structed history is shown in Fig. 6.10, where it should be noted that the PSD is shown on 
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Figure 6.12. RMS strain level, ε RMS , versus blocks to failure, NB , for original and selected ARMA reconstructed histories, 

where Mm = 35 - nonstationary mean case. 
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Figure 6.13. Time series plots for original history and reconstructions with 

deterministic mean, Mm = 35, where different simulations of the 
ARMA(5,0) model are used - nonstationary mean case. 
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a logarithmic scale, and the overall agreement is actually very close.  Finally, for visual 

comparison, the rainflow and damage histograms are obtained and are shown in Figs. 

6.14-6.15.  The overall agreement is good; both the large number of small cycles and the 

small number of large cycles being well approximated. 

 In order to measure the correlation between the deterministic mean, mt , and a simu-

lated mean, mt
NZ
m

, the correlation coefficient, ρm
NZ
m

, is calculated.  To obtain a reliable esti-

mate, 64 simulations are performed for each value of NZ
m  (Eq. 5.26) and averaged.  

Figure 6.16 shows these results, where it is seen that the correlations remain large for a 

range of zero phase angles between 10 and 35 and drop sharply to zero when the number 

of zero phase angles becomes smaller than 10.  Figures 6.17 a-e show the deterministic 

mean variation and a set of four mean variations of different correlation with the determi-

nistic mean.  These records were obtained for correlation values of 

ρm
NZ
m

= ( . , . , . )0 95 080 0 58   corresponding to values for ( )4 7, 20,=m
ZN .  Finally, a random 

phase angle is added to each term, NZ
m = 0, so that the deterministic mean and simulated 

mean are uncorrelated.  Figures 6.17f-g show these simulations, which are drastically dif-

ferent from the original.  This method, therefore, allows one to obtain mean simulations 

with any desired closeness to the deterministic mean. 

 To measure the variability in fatigue life, 64 simulations are performed where both 

mean and random content were generated independently.  The fatigue life is calculated 

for each simulation to obtain the mean, standard deviation, and coefficient of variation 

(ratio of standard deviation and mean) of fatigue life.  The variability of fatigue life, ex-

pressed through the coefficient of variation, for different correlation values, ρm
NZ
m

, is 

shown in Fig. 6.18. 
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Figure 6.16. Correlation, ρm

NZ
m

, between deterministic and ensemble mean versus the 
number of zero phase shifts in ensemble mean, NZ

m  - nonstationary mean 
case. 
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Figure 6.18. Coefficient of variation of fatigue life, δ NB

, versus RMS strain, ε RMS , for 
mean realizations of various correlations to deterministic mean, ρm

NZ
m

 - 
nonstationary mean case. 



 96

 For the case of smaller values of ρ
µ

m
NZ  the variability in life is larger due to the contri-

bution of the larger variations in mean.  For the limiting case of ρ
µ

m
NZ =1, i.e. where the de-

terministic mean is used, the variability is smallest and entirely caused by differences in 

ARMA reconstructions.  The variability in life for all cases of ρ
µ

m
NZ  is larger for smaller 

values of RMS strain level.  This is due to the fact that, as the strain level decreases, the 

large number of rainflow cycles with small range contribute less to the overall damage.  

Therefore, only a few large range cycles contribute to fatigue damage, consequently the 

variability is larger. 

6.3  Nonstationary Variance 

A typical history of nonstationary strain gauge data is chosen as the random fatigue load 

history in this study, Fig. 6.19a.  This history, containing 10240 points, constitutes one 

block.  Its power spectral density is shown in Fig. 6.20. 

 According to the employed model of Eq. (5.1), the history is decomposed into its two 

components, the scaling function, st , and the stationary random part, nt , where it is as-

sumed that the mean, mt , is constant.  To model the scaling function, st ,  an estimate of 

the standard deviation of the time series, ~σ t , is obtained according to Eq. (5.4), and 

shown in Fig. 19b.  In order to concisely represent ~σ t  the Box-Cox transformation is 

performed.  Figure 6.21 shows the skewness coefficient of the transformed series, θ , for a 

range of the transformation parameter, λ , where it can be seen that two values of λ , 

namely λ = −0 05.  and λ = 0 275. , lead to symmetrically distributed series.  In Fig. 6.22 the 

corresponding frequency histograms are shown along with their equivalent Gaussian den-

sity functions.  The normalized errors between the histogram and density function, calcu-
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Figure 6.19. Time series plots for (a) original record, (b) estimated standard deviation, 

~σ t , (c) Box-Cox transform of ~σ t , 
~σ t
BC , (d) Fourier series approximation to 

~σ t
BC  with Ms = 50, st

BC , and (e) scaling function st  - nonstationary 
variance case. 
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Figure 6.20. Power spectral density for the original history and a history reconstructed 

with Ms = 50 and ARMA(6,0) - nonstationary variance case. 
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Figure 6.21. Box-Cox transformation parameter, λ , versus skewness coefficient, θ , of 

transformed series - nonstationary variance case. 
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Figure 6.22. Frequency histogram (bar chart) of Box-Cox transformed series, σ t

BC , and probability density function (smooth 
curve) of corresponding normal distribution for two values of transformation parameter λ , where ε  denotes the 
normalized error between the histogram and the probability density function - nonstationary variance case. 
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lated according to Eq. (5.9), are ε = 7 71.  for λ = −0 05.  and ε = 0 63.  for λ = 0 275. .  The 

optimal transformation parameter, therefore, is λ = 0 275. , and the transformed variable, 
~σ t
BC , is shown in Fig. 6.19c.  A number of Fourier series with an increasing number of 

terms are formed according to Eq. (5.10), giving the tentative scaling functions.  The se-

ries, st
BC , with the fewest number of terms that is correlated at 95% to ~σ t

BC  has Ms = 50 

terms and is shown in Fig. 6.19d.  The inverse Box-Cox transformation of st
BC , st , is the 

scaling function used to render the original series stationary with respect to variance and 

shown in Fig. 6.19e.  This stationary series, the quotient of xt  and st , is shown in  Fig. 

6.23a. 

 The stationary series will be presented by an ARMA model.  Parameters for a number 

of ARMA models are estimated and the correlation coefficients between power spectra of 

these ARMA models and the spectrum of the stationary series are calculated and are 

shown in Table 6.7.  Seeking models which have correlations of ρ S
p q( , )  greater or equal 

than 0 8. , 0 85. , 0 9. , and 0 95.  leads to the following choices of respective minimum order 

models: ARMA(2,0), ARMA(2,1), and ARMA(6,0).  Power spectral densities of the sta-

tionary series, ARMA(2,0), and ARMA(6,0) are shown in Fig. 6.24.  The area under the 

PSD of both ARMA models is approximately the same as the area under the PSD of the 

stationary series.  However, the peak of the stationary series is closer approximated by the 

ARMA(2,0) than by the ARMA(6,0) model.  In the very low frequency range, however, 

the ARMA(6,0) approximates the PSD of the stationary series better.  Moreover, the area 

under the PSD of the stationary series is about the same as the are under the PSD for the 

original loading.  This can be explained by the fact that the original series was of unit 

variance, while the stationary series was obtained by dividing the original series by an 

estimate of it's standard deviation.  Such division leads by definition to a series of unit variance, 
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Figure 6.23. Time series plots for (a) stationary series, (b) ARMA(6,0) model simula-

tion, and (c) reconstruction - nonstationary variance case. 
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Table 6.7. Correlation coefficient of power spectra, ρ S
p q( , ) , for selected ARMA(p,q) 

models, where the bold number indicates the minimum order model for a 
given correlation value - nonstationary variance case. 

 
 
 
 

p
q

0 1 2 3 4 5 6 7 

1 0.08        

2 0.84 0.86       

3 0.84 0.86 0.88      

4 0.89 0.88 0.87 0.85     

5 0.88 0.89 0.90 0.89 0.97    

6 0.95 0.95 0.96 0.93 0.96 0.97   

7 0.94 0.95 0.95 0.93 0.96 0.98 0.99  

8 0.97 0.96 0.96 0.95 0.97 0.98 0.99 0.99 
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Figure 6.24. Power spectral density for the stationary series and two ARMA models, 
where for ARMA(2,0) ρ S

( , ) .2 0 084=  and for ARMA(6,0) ρ S
( , ) .6 0 0 95=  - non-

stationary variance case. 
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therefore, the areas under the respective power spectral densities have to be identical. 

 Reconstructions are formed for all of these ARMA models and multiplied by the de-

terministic scaling function.  Strain life curves are obtained for the original loading, where the 

bounded life calculation is performed, and for various ARMA reconstructions, Fig. 6.25, where 

64 independent reconstructions were performed and averaged to eliminate any bias introduced 

by a particular reconstruction.  Note that strain life curves for the ARMA(2,0), ARMA(2,1), 

and ARMA(6,0) reconstructions are very close, but only the highest order model, i.e. 

ARMA(6,0) model is deemed appropriate as its strain life curve falls, at least partially, inside the 

bounds of the original.  As before strain life curves are also shown for ARMA(0,0) and 

ARMA(1,0), the limiting cases.  Here, it is noted that ARMA(0,0) and ARMA(1,0) life 

predictions are about as far from the bounds of the original than it is the case of the stationary 

loading in Section 6.1.  As the mean variation  is zero, it is the stationary random component 

that governs fatigue life.  The scaling function, st , determines the variance of the process, but the 

ARMA model determines the correlation, and therefore rainflow cycles, of the series.  

Therefore, any bias introduced by an inappropriate ARMA model influences the reconstruction 

as it was the case in Section 6.1. 

 A complete reconstruction, using the stationary record obtained from the selected 

ARMA(6,0) model, shown in Fig. 6.23b, is shown in Fig. 6.23c.  The power spectral density of 

the reconstructed history is shown in Fig. 6.20.  Finally, for visual comparison, the rainflow and 

damage histograms are obtained and are shown in Figs. 6.26-6.27.  The overall agreement is 

good; both the large number of small cycles and the small number of large cycles being well 

approximated.  To demonstrate the consistency of the reconstruc- 
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Figure 6.25. RMS strain level, ε RMS , versus blocks to failure, NB , for the original and reconstructed history with ARMA(6,0) 

and Ms = 50- nonstationary variance case. 
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tion, Fig. 6.28 shows five independently simulated records. 

6.4  Nonstationary Mean and Variance 

A typical history of nonstationary strain gauge data is chosen as the random fatigue load 

history in this study, Fig. 6.29a, where it is noted that this is the history used in Section 

6.2, but no manipulation prior to this study was performed.  This history, containing 

10240 points, constitutes one block.  Its power spectral density is shown in Fig. 6.30. 

 According to the employed model of Eq. (5.1), the history is decomposed into its 

three components, the mean component, mt , the scaling function, st , and the stationary 

random part, nt .  In order to model the variation of the mean in a deterministic way, mt , 

various Fourier series with increasing numbers of terms are formed, giving the tentative 

mean descriptions.  The difference, n st t⋅ , of the original record, xt , and each mean de-

scription, mt , is obtained.  These differences are then analyzed for deviations from being a 

zero-mean process.  The best mean description is chosen as the one that renders n st t⋅  sta-

tionary with respect to its mean, using the Fourier series with the least number of terms. 

 In order to analyze the mean-removed record, n st t⋅ , it is divided into NI  intervals 

each of which contains, according to Section 5.3, NP = 50 points.  This leads to 

NI = 204  intervals, for each of which the interval mean is determined.  As 10240 can not 

be evenly divided by 50, the first and last 20 points in the series are ignored for the run 

tests. 

 Run tests based on the total number of runs, the number of runs up and down, and the 
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Figure 6.28. Time series plots for original history and reconstructions with the 

deterministic scaling function, Ms = 50, where different simulations of the 
ARMA(6,0) model are used - nonstationary variance case. 
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Figure 6.29. Time series plots for (a) original history, (b) deterministic mean with 

Mm = 41, (c) mean-removed series, (d) estimated standard deviation, ~σ t , 
(e) Box-Cox transform of ~σ t , 

~σ t
BC  - nonstationary mean and variance. 
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Figure 6.30. Power spectral density for the original history and a history reconstructed 
with  Mm = 41, Ms = 70, and ARMA(8,0) - nonstationary mean and vari-
ance case. 
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 length of the longest run, are performed on the sequence of interval means calculated from 

n st t⋅ .  This assures that a variety of deviations from the expected random behavior of this 

sequence can be detected. 

 For the case where N I = 204 , the 95% ( )95.0=α  confidence limits for the total number 

of runs are ( )11689 <<
TRµ , while the number of runs up and down covers the range 

( )147123 <<
UDRµ .  The length of the longest admissible run, according to Eq. (5.17) for a 

random sequence of length 204, is K=6. 

 Table 6.8 shows the results of these run tests.  There is no value for which all run tests are 

passed.  However, for Mm = 41 the total number of runs, rT , is within the allowable range and 

the number or runs up and down, rUD, is only slightly outside the allowable range.  Therefore, a 

total number of Mm = 41 Fourier series coefficients is deemed appropriate for a sufficient mean 

description to render the remaining signal approximately stationary with respect to its mean 

value.  See also Fig. 6.30b for the deterministic mean model, mt , and Fig. 6.30c, for the mean 

removed record, n st t⋅ , 

 In order to model the scaling function, st ,  an estimate of the standard deviation, ~σ t , of the 

time series is obtained according to Eq. (5.4), and shown in Fig. 6.30d.  In order to concisely 

represent ~σ t  the Box-Cox transformation is performed, where λ = 0 403.  is the optimal 

transformation parameter, and the transformed variable, ~σ t
BC , is shown in Fig. 6.30e.  A 

number of Fourier series with increasing number of terms are formed according to Eq. (5.9), 

giving the tentative scaling functions.  The series, st
BC , with the fewest number of terms that is 

correlated at 95% to ~σ t
BC  has Ms = 70 terms and is shown in Fig. 6.31a.  The inverse Box-

Cox transformation of st
BC , st , is the scaling function used to ren- 
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Table 6.8. Results of run tests for different values of Mm  for α = 0.95  (italics = 
failure of test, bold accepted as stationary) - nonstationary mean and 
variance case. 

 
 
 

 
 NI = 204  
 α = 0.90  91<rT <114 125<rUD<145 k≤5 
 α = 0.98  86<rT <119 121<rUD<149 k≤6 
 α = 0.95  89<rT <116 123<rUD<147 k≤6 
 Mm  rT  rUD  k 
 20 77 108      6 
 30 103 118     4 
 40 109 116     4 
 41 108 118    5 
 42 122 134      4 
 50 143 142     3 
 60 147 150     3 
 70 157 162     3 
 80 162 166     4 
 90 156 166     3 
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Figure 6.31. Time series plots for (a) Fourier series fit to ~σ t

BC  with Ms = 70, st
BC , (b) 

scaling function st , (c) stationary series, (d) ARMA(8,0) model simulation, 
and (e) reconstruction - nonstationary mean and variance case. 
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der the mean-removed series stationary with respect to variance and shown in Fig. 6.31b.  This 

stationary series, the quotient of n st t⋅  and st , is shown in  Fig. 6.31c.  

 The stationary series will be presented by an ARMA model.  Parameters for a number of 

ARMA models are estimated, and the correlation coefficient between power spectra of these 

ARMA models and the spectrum of the stationary series is calculated, Table 6.9.  Seeking 

models which have correlations of ρ S
p q( , )  greater or equal than 0 8. , 0 85. , 0 9. , and 0 95.  leads to 

the choice of ARMA(8,0) as the model with least number of parameters that is correlated to the 

stationary series at more than 80%.  The corresponding value of the correlation coefficient is 

ρ S
( , ) .8 0 0 96= .  Power spectral densities of the stationary series and ARMA(8,0) are shown in 

Fig. 6.32.  It is noted that the relative extrema of the stationary series are very closely 

approximated by the ARMA model, as it is the case for the area under the PSD of the original. 

 Reconstructions are formed for this ARMA model and multiplied by the deterministic 

scaling function.  After adding the deterministic mean variation, mt , strain life curves are 

obtained for the original loading, where the bounded life calculation is performed, and for the 

reconstruction, Fig. 6.33, where 64 independent reconstructions were performed and averaged 

to eliminate any bias introduced by a particular reconstruction.  This reconstruction is deemed 

appropriate as its strain life curve falls, at least partially, inside the bounds of the original.  A 

complete reconstruction, using the stationary record obtained from the selected ARMA(8,0) 

model, shown in Fig. 6.31d, is shown in Fig. 6.31e.  Strain life curves are also shown for 

ARMA(0,0) and ARMA(1,0), where it is noted that they constitute, as in Section 6.1, the 

limiting cases of all ARMA reconstructions.  ARMA(0,0) leads to the shortest life, while 

ARMA(1,0) leads to the longest life predicted.  Moreover, it is  
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Table 6.9. Correlation coefficient of power spectra, ρ S
p q( , ) , for selected ARMA(p,q) 

models, where the bold number indicates the minimum order model for a 
given correlation value - nonstationary mean and variance case. 

 
 
 
 

p
q

0 1 2 3 4 5 6 7 8 9 

1 0.62          

2 0.48 0.50         

3 0.69 0.71 0.73        

4 0.46 0.52 0.62 0.68       

5 0.73 0.74 0.74 0.74 0.75      

6 0.75 0.71 0.68 0.58 0.58 0.59     

7 0.56 0.54 0.80 0.93 0.94 0.95 0.93    

8 0.96 0.95 0.94 0.95 0.95 0.95 0.93 0.93   

9 0.89 0.89 0.94 0.96 0.96 0.94 0.91 0.94 0.95  

10 0.95 0.92 0.93 0.94 0.94 0.94 0.91 0.95 0.94 0.94
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Figure 6.32. Power spectral density for the stationary series and for ARMA(8,0) with 
ρ S

( , ) .8 0 0 96=  - nonstationary mean and variance case. 
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Figure 6.33. RMS strain level, ε RMS , versus blocks to failure, NB , for original history and a history reconstructed with Mm = 41, 
Ms = 70, and ARMA(8,0) - nonstationary mean and variance case. 
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noted that, as for the case of a nonstationary mean variation in Section 6.2, ARMA(0,0) 

and ARMA(1,0) are closer to the bounds of the original than is the case of the stationary 

loading in Section 6.1.  Again, this can be explained by the presence of the mean 

variation. 

 The power spectral density of the reconstructed history is shown in Fig. 6.30, where it 

should be noted that the PSD is shown on a logarithmic scale and the overall agreement is 

actually very close.  Finally, for visual comparison, the rainflow and damage histograms 

are obtained and shown in Figs. 6.34-6.35.  The overall agreement is good; both the large 

number of small cycles and the small number of large cycles being well approximated.  

To demonstrate the consistency of the reconstruction, Fig. 6.36 shows five independently 

simulated records. 
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Figure 6.36. Time series plots for original history and reconstructions with the 

deterministic mean, Mm = 41,  and the deterministic scaling function, 
Ms = 70, where different simulations of the ARMA(8,0) model are used - 
nonstationary variance case. 
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CHAPTER 7.  STUDIES OF MULTIAXIAL LOADINGS 

 

A strain gauge rosette history was obtained from an automotive front suspension compo-

nent driven through proving ground maneuvers.  This history was provided by General 

Motors Corporation, MI, to the Society of Automotive Engineers, SAE, Fatigue Design 

and Evaluation Committee.  This set constitutes three channels, where channels 1 and 3 

measure strain in directions perpendicular to each other and channel 2 measures strain 

along a direction which is half between channels 1 and 3.  All fatigue life calculations 

were performed by Lokesh Juneja (according to aforementioned multiaxial fatigue model, 

Juneja, 1992) and are based on the material properties of SAE 1045 steel, stated in Table 

6.1. 

7.1  Stationary Mean and Variance 

The history, Fig. 7.1, containing 12500 points, constitutes one block.  The auto- and 

cross- spectral densities, ( )fSij , where i j, = 1, 2, 3 refer to channels 1, 2, 3, are shown in 

Figs. 7.2-7.7.  As the history consists of three channels, no meaningful normalization with 

respect to mean or variance can be achieved.  The basic statistics of all three channels, for 

original and reconstructed record, are shown in Table 7.1. 

 According to the employed model of Eq. (5.1), the history is decomposed into its 
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Figure 7.1. Time series plots for strain gauge data (a) channel 1, (b) channel 2, and (c) 

channel 3. 
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Figure 7.2. Power spectral density, ( )fS11 , for the original history and a reconstructed 

history. 
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Figure 7.3. Power spectral density, ( )fS22 , for the original history and a reconstructed 

history. 
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Figure 7.4. Power spectral density, ( )fS33 , for the original history and a reconstructed 

history. 
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Figure 7.5. Power spectral density, ( )fS12 , for the original history and a reconstructed 

history. 
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Figure 7.6. Power spectral density, ( )fS13 , for the original history and a reconstructed 

history. 
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Figure 7.7. Power spectral density, ( )fS23 , for the original history and a reconstructed 

history. 
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Table 7.1. Basic statistics for original and reconstructed 3 channel history. 
 
 
 
 
 Channel 1 Channel 2 Channel3 
 Original Reconstruction Original Reconstruction Original Reconstruction
 Mean 205.478 204.782 – 34.603 – 34.494 158.532 159.480 
 Standard Deviation 114.104 112.579 25.561 25.199 258.937 255.718 
 Skewness 0.456 0.380 – 0.650 – 0.590 – 0.467 – 0.458 
 Minimum 16.950 – 57.213 – 119.768 – 127.471 – 485.613 510.565 
 Maximum 589.808 582.593 12.046 22.738 722.396 – 738.664 
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three components, the mean component, m t , the scaling function, st , and the stationary 

random part, n t , where it is understood that the three channels, such as ( )1
tm , ( )2

tm , and 
( )3
tm  constitute the respective vector, m t , and will from now on be referred to as mt

iβγ.  In 

order to model the variation of the mean, ( )i
tm , in a deterministic way, various Fourier se-

ries with increasing numbers of terms are formed, giving the tentative mean descriptions.  

The differences of the original records and each mean description, ( ) ( )i
t

i
t sn ⋅ , are obtained.  

These differences are then analyzed for deviations from being a zero-mean process.  The 

best mean description is chosen as the one that renders ( ) ( )i
t

i
t sn ⋅  stationary, with respect to 

its mean, using the Fourier series with the least number of terms. 

 In order to analyze the mean-removed records, ( ) ( )i
t

i
t sn ⋅ , the same analysis as for the 

uniaxial cases is performed.  Each channel is divided into NI  intervals each of which 

contains, according to Section 5.3, NP = 50 points.  This leads to NI = 250 intervals, for 

each of which the interval mean is determined. 

 Run tests based on the total number of runs, the number of runs up and down, and the 

length of the longest run, are performed on the sequence of interval means calculated 

from ( ) ( )i
t

i
t sn ⋅ .  This assures that a variety of deviations from the expected random 

behavior of this sequence can be detected. 

 Confidence intervals for run tests at levels α = 0 90. , α = 0 95. , and α = 0 98.  are 

shown in Table 7.2, where α = 0 95.  is chosen as the level at which run tests will be 

performed.  For the case where NI = 250, the 95% ( )95.0=α  confidence limits for the 

total number of runs are ( )141110 <<
TR

µ , while the number of runs up and down covers 

the range ( )179153 <<
UDR

µ .  The length of the longest admissible run, according to Eq. 

(5.16) for a  
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Table 7.2. Results of run tests of channels 1, 2, and 3 for different values of Mm for α = 0.95  (italics = failure of test, bold 
accepted as stationary ). 

 
 
 
 

 NI = 250 
 Channel 1 Channel 2 Channel 3 

α = 0.98  107<rT <144 150<rUD<181 k≤6 107<rT <144 150<rUD<181 k≤6 107<rT <144 150<rUD<181 k≤6 
α = 0.90  113<rT <138 155<rUD<177 k≤6 113<rT <138 155<rUD<177 k≤6 113<rT <138 155<rUD<177 k≤6 
α = 0.95  110<rT <141 153<rUD<179 k≤6 110<rT <141 153<rUD<179 k≤6 110<rT <141 153<rUD<179 k≤6 

Mm  rT  rUD  k rT  rUD  k rT  rUD  k 
 25 96 119 6 98 113 6 108 123 6 
30 106 129 5 104 129 5 114 129 4 
35 114 137 5 110 133 5 110 123 5 
40 120 141 4 122 143 4 120 135 4 
45 128 139 4 128 141 4 132 143 4 
50 140 155 4 136 153 4 142 147 4 
55 152 153 4 150 155 4 150 157 4 
60 158 167 3 156 161 4 156 165 3 
65 164 169 3 156 163 3 164 169 3 
70 164 173 3 164 169 3 168 175 3 
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random sequence of length 250 is  K=6. 

 It can be seen that for both channels 1 and 2 a value of Mm = 50 renders the series 
( ) ( )11

tt sn ⋅  and ( ) ( )22
tt sn ⋅  stationary with respect to their mean.  For channel 3, however, 

there is no value for which all run tests are passed.  For Mm = 50 the total number of 

runs, rT , is just above the allowable range and the number or runs up and down, rUD , is 

slightly below the allowable range.  Other values of Mm  would possibly lead to a series 

that would pass at least one of the two tests.  However, it is believed that failing both tests 

by a slim margin is preferable.  Therefore, a total number of Mm = 50 Fourier series 

coefficients is deemed appropriate for a sufficient mean description to render the series 
( ) ( )33

tt sn ⋅  approximately stationary with respect to its mean value.  See also Figs. 7.8b, 

7.10b, and 7.12b for the deterministic mean models, ( )tmi , and Figs. 7.8c, 7.10c, and 

7.12c for the mean removed records, ( ) ( )i
t

i
t sn ⋅ . 

 In order to model the scaling functions, ( )i
ts ,  an estimate of the standard deviation of 

the time series, ( )i
tσ~ , is obtained according to Eq. (5.4), and shown in Figs. 7.8d,  7.10d, 

and  7.12d, respectively.  In order to concisely represent ( )i
tσ~  the Box-Cox 

transformations are performed, where λ1 0 613= − . , λ 2 1318= − . , and λ 3 0 524= − .  are the 

optimal transformation parameters, and the transformed series, ( )BCi
tσ~ , are shown in Figs. 

7.8e, 7.10e, and 7.12e.  A number of Fourier series with an increasing number of terms 

are formed according to Eq. (5.9) giving the tentative scaling functions.  The series with 

the fewest number of terms that is correlated at 95% to ( )BCi
tσ~ , ( )BCi

ts , has Ms = 40 terms 

for channel 1, Ms = 90 terms for channel 2, and Ms = 80 terms for channel 3.  These 

series are shown in is shown in Figs. 7.9a, 7.11a, and 7.13a.  The inverse Box-Cox trans-

formations of ( )BCi
ts , ( )i

ts , are the scaling functions used to render the mean- removed 
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Figure 7.8. Time series plots for (a) original history, (b) deterministic mean with 

Mµ = 50, (c) mean-removed series, (d) estimated standard deviation, ~σ t , 
(e) Box-Cox transformation of ~σ t , 

~σ t
BC  - channel 1. 
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Figure 7.9. Time series plots for (a) Fourier series approximation to ~σ t

BC  with 
Ms = 40, st

BC , (b) scaling function, st , (c) stationary series, (d) 
ARMA(6,5) model simulation, and (e) reconstruction - channel 1. 
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Figure 7.10. Time series plots for (a) original history, (b) deterministic mean with 

Mµ = 50, (c) mean-removed series, (d) estimated standard deviation, ~σ t , 
(e) Box-Cox transformation of ~σ t , 

~σ t
BC  - channel 2. 
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Figure 7.11. Time series plots for (a) Fourier series approximation to ~σ t

BC  with 
Ms = 90, st

BC , (b) scaling function, st , (c) stationary series, (d) 
ARMA(6,5) model simulation, and (e) reconstruction - channel 2. 
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Figure 7.12. Time series plots for (a) original history, (b) deterministic mean with 

Mµ = 50, (c) mean-removed series, (d) estimated standard deviation, ~σ t , 
(e) Box-Cox transformation of ~σ t  

~σ t
BC  - channel 3. 
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Figure 7.13. Time series plots for (a) Fourier series approximation to ~σ t

BC  with 
Ms = 80, st

BC , (b) scaling function, st , (c) stationary series, (d) 
ARMA(6,5) model simulation, and (e) reconstruction - channel 3. 
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series, ( ) ( )i
t

i
t sn ⋅ , stationary with respect to variance and are shown in Figs. 7.9b, 7.11b, 

and 7.13b.  The stationary series, i.e. the quotient of ( ) ( )i
t

i
t sn ⋅  and ( )i

ts , are shown in  Figs. 

7.9c, 7.11c, and 7.13c.  

 The stationary series are represented by a three dimensional ARMA model.  Parame-

ters for a number of ARMA models are estimated, where Tables 7.3-7.5 show parameters 

for a few selected models, and the correlation coefficient between power spectra of these 

ARMA models and the spectrum of the stationary series is calculated, Table 7.6.  Because 

the auto- and cross-spectra of the stationary series are relatively simple, low order ARMA 

models fit these spectra well.  Therefore, models are sought where all of the spectra, 

( )fSij  have a minimum correlation of ρ S
p q
ij

( , )  greater than 0.9, 0 95. , 0 97. , and 0 98.  to the 

respective spectra obtained for the stationary series.  This leads to the choice of 

ARMA(2,0), ARMA(2,1), ARMA(3,0), and ARMA(6,5).  It is noted that increasing the 

model order beyond ARMA(6,5) does not increase the correlation coefficients.  Auto- and 

cross-spectral densities for ARMA(2,0) and ARMA(6,5) are shown in Figs. 7.14-7.19.  

The area under the spectral densities is well approximated by both models, but the higher 

order model traces the peaks better.  Moreover, as all spectra are shown on a logarithmic 

scale, the agreement is actually quite good. 

 Time series are generated for all ARMA models, shown in Figs. 7.9d, 7.11d, and 

7.13d, are multiplied by the deterministic scaling functions, ( )i
ts , and are added to the de-

terministic mean variations, ( )i
tm .  A complete reconstruction, using a realization of the 

selected ARMA(6,5) model is shown in Figs. 7.9e, 7.11e, and 7.13e.  It is noted that the 

original time series for all three channels exhibit, in the regions of t=2500 and t=10000, a 

distinctly different pattern.  It is presumed that a maneuver was executed that induced a 
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Table 7.3. ARMA parameters, φφφφi , and correlation matrix, V , of white noise input for selected ARMA models. 
 
 
 
 
ARMA(p,q) (0,0) (1,0) (2,0) 

 
 φφφφi ; i= 1 

 

















−−−
−−

−−−

93.02E6.54E9.6
61.010.075.0

2E9.261.038.0

 
















−−−−
−−

−

06.12.4E82E1.7
04.014.027.0
43.002.049.0

 
 2 

  

















−−−
−−

−−−

64.03E7.82E4.2
81.042.02E7.5
53.02E8.116.0

 
 
 V  

















−
−−

−

14.182.092.0
82.007.191.0
92.091.018.1

 
















−−−
−−−

−

2E2.72E1.470.0
2E1.453.050.0

70.050.0.140

 
















−−−−
−−−−
−−−

2E5.42E4.22E8.4
2E4.223.02E4.3
2E8.42E4.3.120
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Table 7.4. ARMA parameters, φφφφi  and θθθθ i , and correlation matrix, V , of white noise 
input for selected ARMA models. 

 
 
 
 
ARMA(p,q) (2,1) (3,0) 

 
 φφφφi ; i= 1 

















−−−−
−−−−

−

5.12E3.92E4.7
41.02E5.782.0
29.031.037.0

 
















−
−−

−

14.182.092.0
82.007.191.0
92.091.018.1

 

 
 2 

















−−
−−

−−−−−

45.03E3.32E1.2
16.032.02E3.1

33.02E2.62E3.5

 
















−−−
−−−

−−−−

90.02E8.12E8.6
59.023.02E7.6
67.02E6.314.0

 
 
 3 

 
 

















−−−−
−

−−−

17.02E4.12E3.9
24.031.032.0
20.02E1.62E8.5

 
 
 θθθθ i ; i=1 

















−−−−−
−−−−

−−−

23.03E8.92E2.1
2E4.731.017.0

12.015.013.0

 

 

 
 V  

















−−−−
−−−−
−−−−−

2E5.32E7.12E8.3
2E7.123.02E9.2
2E8.32E9.22E8.8

 
















−−−−
−−−
−−

2E4.42E5.22E6.4
2E5.228.004.0
2E6.404.012.0
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Table 7.5. ARMA parameters, φφφφi  and θθθθ i , and correlation matrix, V , of white noise 
input for ARMA(6,5) model. 

 
 
 
 
ARMA(6,5) φφφφi  θθθθ i  

 
  i= 1 

















−−−
−−

−

20.22E4.322.0
83.091.008.0
91.071.088.0

 
















−−
−−−−

−−−

47.02E9.413.0
34.02E2.516.0
50.02E8.116.0

 
 
 2 

















−−
−−

−−−−

70.13E9.526.0
50.123.011.0
50.12E5.32E3.3

















−−−−−
−

−−−

3E0.62E5.22E8.1
33.013.018.0
17.03E6.717.0

 
 
 3 

















−−−−
−

−−

53.02E9.22E2.4
85.065.068.0
20.03E4.837.0

 
















−−−−

−−−

31.02E5.42E5.4
18.033.033.0
52.02E2.224.0

 
 
 4 

















−−−−

−−−

27.02E8.12E2.1
09.017.023.0
59.03E3.973.0

 
















−−−−
−

−−−

2E2.92E1.12E6.2
18.034.021.0
06.02E7.42E4.3

 
 
 5 

















−−−
−−−−

−−

47.02E4.118.0
2E6.23E6.92E4.4

20.02E3.12E5.3

 
















−−−−−
−−−

−−

3E2.52E5.106.0
13.021.02E6.8
08.03E3.617.0

 
 
 6 

















−−
−−−

−−−

25.03E6.311.0
12.02E8.218.0
42.02E4.226.0

 

 

 
 V  

















−−−−
−−−−
−−−−

2E5.32E7.12E8.3
2E7.123.02E9.2
2E8.32E9.22E8.8
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Table 7.6. Correlation coefficient of power spectra, ρ S
p q
ij

( , ) , for selected ARMA(p,q) 
models, where the subscript indicates the auto- or cross-spectrum with 
minimal correlation coefficient and the bold number indicates the 
minimum order model for a given correlation value. 

 
 
 
 

p
q

0 1 2 3 4 5 6 7 

1 0.8613

2 0.9322 0.9622

3 0.9722 0.9722 0.9722

4 0.9622 0.9622 0.9722 0.9613

5 0.9513 0.9613 0.9613 0.9733 0.8833

6 0.9522 0.9522 0.9522 0.9422 0.8613 0.9833

7 0.9722 0.9722 0.9722 0.9722 0.8613 0.8833 0.9711

8 0.9422 0.9422 0.9422 0.9622 0.8613 0.8833 0.9822 0.9722
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Figure 7.14. Power spectral density, ( )fS11 , for the stationary series, for ARMA(2,0) 

with ρ S33

2 0 0 93( , ) .= , and for ARMA(6,5) with ρ S22

6 5 0 98( , ) .= . 
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Figure 7.15. Power spectral density, ( )fS22 , for the stationary series, for ARMA(2,0) 

with ρ S33

2 0 0 93( , ) .= , and for ARMA(6,5) with ρ S22

6 5 0 98( , ) .= . 
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Figure 7.16. Power spectral density, ( )fS33 , for the stationary series, for ARMA(2,0) 

with ρ S33

2 0 0 93( , ) .= , and for ARMA(6,5) with ρ S22

6 5 0 98( , ) .= . 
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Figure 7.17. Power spectral density, ( )fS12 , for the stationary series, for ARMA(2,0) 

with ρ S33

2 0 0 93( , ) .= , and for ARMA(6,5) with ρ S22

6 5 0 98( , ) .= . 
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Figure 7.18. Power spectral density, ( )fS13 , for the stationary series, for ARMA(2,0) 

with ρ S33

2 0 0 93( , ) .= , and for ARMA(6,5) with ρ S22

6 5 0 98( , ) .= . 
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Figure 7.19. Power spectral density, ( )fS23 , for the stationary series, for ARMA(2,0) 

with ρ S33

2 0 0 93( , ) .= , and for ARMA(6,5) with ρ S22

6 5 0 98( , ) .= . 
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few large amplitude short duration (spike) events.  The spectral content of this part of the 

series is therefore distinctly different from the remaining series.  Consequently, the recon-

struction will perform poorly in that region.  It can be seen in the reconstruction that for 

these regions a much larger number of large amplitude cycles are predicted than were pre-

sent in the original loading.  This will affect fatigue life predictions. 

 The power spectral densities, ( )fSij , of the reconstructed histories are shown in Figs. 

7.2-7.7., where again it is noted that the spectra are shown on a logarithmic scale.  As the 

spectra are calculated for the record as a whole, any of the above stated variations in spec-

tral content, as they are of short duration, are averaged and cannot be observed. 

 Fatigue lives are calculated according to the simplified critical plane approach de-

scribed in Section 4.2.1, and these are shown in Fig. 7.20.  Reconstructions using 

ARMA(2,0), ARMA(2,1), ARMA(3,0), and ARMA(6,5) predict fatigue lives that are 

very close to each other, such that strain life curves partially overlapped.  As before, the 

ARMA(0,0) and ARMA(1,0) models constitute the limiting cases on fatigue life.  

Because the reconstruction introduced a number of large cycles that are not present in the 

original loading, all reconstructions tend to be biased toward shorter lives.  In fact, the 

limiting case of the ARMA(1,0) reconstruction that predicts the longest life is the one that 

is closest to the life predicted for the original record.  However, of all reconstructions 

with a minimum correlation for the power spectra, ρ S
p q
ij

( , ) .≥ 0 90, the strain life curve 

obtained from the ARMA(6,5) model was closest to the one obtained from the original 

loading.  The ARMA(6,5) model was, therefore, deemed appropriate for reconstruction as 

both spectral shape and fatigue life agreed reasonably well with the original. 
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Figure 7.20. Scaling factor, F, versus blocks to failure, NB , for the original and selected ARMA reconstructed histories. 



 

155 

 

CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 

 

The proposed method presents an efficient and effective solution to the modeling of non-

stationary random fatigue loadings.  As the time base of the original loading is preserved, 

it is applicable wherever a concise load description, preserving information regarding fre-

quency content, is desired.  The method, therefore, can be used in a diversity of fields, 

such as random vibration, Monte Carlo studies, and Finite Element Methods.   

 For all studied cases, the ARMA(0,0) reconstruction predicted a shorter fatigue life 

than higher order models, while the ARMA(1,0) model predicted a fatigue life longer 

than higher order model reconstructions. 

 The ability of to generate a loading ensemble is useful in generalizing observed load-

ings.  Statistically equivalent variations of an observed loading can be obtained, with the 

option of specifying, separately for the mean and variance content, the degree of correla-

tion between original and reconstructed loadings. 

 The traditional procedure of ARMA model building needs adjustment for large data 

sets, specifically in specifying criteria of model order selection that do not depend on the 

series of residuals after fitting a model.  The criteria presented in the literature demand 

models of very large order, when a lower order model is sufficient for representing all 
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relevant dynamics of the original loading.  The criterion, proposed herein, is a first 

attempt to the solution of this problem. 

 To measure the success of removing nonstationarity with respect to the mean value, 

nonparametric tests were proposed.  While these tests are useful in detecting trends and 

cyclical patterns, they did not always allow one to uniquely identify an optimal mean de-

scription. 

 Further study of the following aspects is proposed: 

 To take fully advantage of the stochastic nature of the model, the method of fatigue 

life prediction should be adjusted.  Calculating the life from a short record, by assuming 

that this record would be applied repeatedly until failure occurs, does not reflect realistic 

variations in loadings.  It is proposed that generating nonrepeating infinitely long histories 

could be used to calculate a more realistic fatigue life estimate.   

 For the case of multiaxial loadings, correlations between channels should be consid-

ered not only for the random variations, but also for mean content and scaling functions.  

This objective can be achieved by using vector Fourier series, where the Fourier coeffi-

cients can account for correlations between channels. 

 The proposed method of ensemble generation could be verified if more data were col-

lected for a particular record.  In general, it can be said that, for a meaningful stochastic 

analysis, a field test should be repeated for a number of times before reliable information 

about the underlying ensemble can be inferred. 
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 Considering nonstationarities with respect to mean and variance only is not always 

sufficient.  Loadings of short duration and large amplitude, so called spikes or pothole 

events, are not included in the current description of loadings.  Moreover, as seen in 

Chapter 7, the power spectral density may change over time even for a record for which 

the mean variation has been removed, and a scaling function applied, such that the 

variance is constant.  Further study in identifying and modeling such nonstationarities, 

therefore, is needed. 
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