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Abstract; The concise description of one dimensional vehicle loading histories
for fatigue analysis using stochastic process theory is presented in this study.
The load history is considered Lo have stationary random and nonstalionary
mean content. The stationary variations are modelled by an Autoregressive
Moving Average (ARMA) model, while a Fourier serics is used to model the
variation of the mean. Due to the use of random phase angies in the Fourier
series an ensemble of mcan variations is obtained. The methods of
nonparametric statistics are used to determine the success of the modelling of
nonstationarity. Justification of the method is obtained Lhrough comparison of
rainflow cycle distributions and resulting fatigue lives of original and simulated
loadings. Due to the rclatively small number of Fourier coefficients needed
together with the use of ARMA models, a concise description of complex
loadings is achieved. The overall frequency content and scquential information
of the load history is statistically preserved. An ensemble of load histories can
be constructed on-line with minimal computer storage capacily as used in
testing equipment.

Keywords: ARMA models, correlations, cnsemble, fatigue analysis,
nonstaticnary, random histories, variability, vehicle loadings.

Reference to this article should be made as follows: Leser, C., Thangjitham, S.
and Dowling, N.E. (1994) ‘Modelling of random vehicle loading histories for
fatigue analysis’, Int. J. of Vehicle Design, Yol. 15, Nos. 3/4/5, pp. 467-483.

1 Intreduction

Vehicle loading histories are often lengthy and random in nature. For successful design
against fatigue failure, simulation studies such as the Monle Carlo method and laboratory
testing are undertaken. An accurate and concise description of the loading, thercfore, 1s
desirable. The mcthods of modelling irregular fatigue loading histories can be divided
into two groups, namely counting methods and methods based on correlation theory (Bily
and Bukoveczky, 1976).

First, model-free techniques cvaluate the record via a count. These mcthods consider
only the extreme values which reduces the required storage by discarding all intermediate
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points. They work well for fatiguc loading histories in the absence of creep effects,
because only the extremes induce fatigue damage, while intermediate points are
irrelevant. In this class, most commonly uscd are the Rainflow matrix method (Endo e;
al., 1974) and the Te-From matrix method (Haibach ef al., 1976).

On the other hand, therc are descriptions of random loadings based on correlation
theory. For these technigues, the model beecomes a substitute for the data, which Jeads to a
concise description with few paramceters. A method proposed by Yang (1972) represents
the data by its power spectral density, ic. the frequency domain description of the
autocorrelation of the original data. The Markov method, as described by Cacko er al.
(1988), falls in this category, as do a more gencral class of time serics called
Autoregressive Moving Average (ARMA) models.

Another publication by the authors of this study (Thangjitham et al., 1994) discusses
in detail the use of ARMA models for stationary fatigue loading histories. Traditionally,
ARMA models have been used in the arcas of earthquake (Kozin, 1988), wind (Li and
Kareem, 1990) and ocean enginecring (Spanos, 1983) to model random load histories. An
article reviewing ARMA models for Monte Carlo studies is due to Spanos and Mignolel
(1989).

Random processes can be analysed either in the time or frequency domain.
Techniques in the time domain arc cmployed becausc of their elficiency in simulating
loadings. Furthermore, random processes can be classified into two categories, stationary
and nonstationary. Nonstationary processes have certain characteristics such as mean or
variance that change over ime. The modelling of nonstationarity is important because
many real loadings are nonstationary.

The history to be modelled in this study, taken from a ground vehicle travelling on a
rough road, is considered to consist of a slowly varying process, the nonslationary mean
variation, and a fast varying proccss, the stationary randoem variation, To account for such
mean variation in an accurate but concise manner, Fourier scrics are employed for their
versatility with respect to describing loadings and their abilily to be extended to a
stochastic process. ARMA modcls are used for their ctficiency in describing stationary
random processes. Finally, an ensemble of loadings is obtained from the observation of a
single record, because both mean and random variation are presented by stochastic

processes.

Z Nonstationary random fatiguc load model

The model developed to describe fatigue random load histories is applicable to both
stationary and nonstationary cascs, and the mean variation can be modelled as being

cither deterministic or stochastic.

2.1 Assumptions

The time history is a superposition of a zero-mean stationary random process and events
which affect the variation of the mean. These two components contribute distinctly to the
power spectral density (PSD) of the combined process. The mean variation is of stowly
varying nature and contributes only to the low [requency range of the PSD. The
stationary random variation, however, may contribute to the PSD at any frequency.

For the case studied, the random loading, Figure 1{a), represents actual data of the
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strain response at a given point of a vehicle travelling over a rough road. The irregular
road profile induces strain, which is of stationary random nature, while manoeuvres
induce nonstationary vartations in strain with respect to mean. The assumption of
manocuvres being of slow varying nature 13 justified through the analysis of actual
driving behaviour (McLean and Hoffmann, 1971),

2.2 The time series representation

To represent the vehicle loading history with nonstationary mean variation, the following
model then is employed:
x(ty=m(t)+n(t) n

where x(1) represents the underlying history, n(t) is a zcro-mean stationary random
process, and m(t) is the nonstationary variation in the mean value. In this study, the
variation of the mean value will be treated either deterministic or stochastic.

To minimize the number of parameters necessary to characlerize the mean variation
in a deterministic manner a truncated Fourier series is used such that

m(t)=1$ay+ 2:: [ak cos( kAt )+ by sin(w(,kmr]] (2)

where Ar is the length of the sample interval, wy =27/ AN is the {undamental
frequency, M, and N are the number of terms in the truncated Fourier scries and the total
number of sample points of the history, respectively, and a, and by are the discrete
Fourier cocfficients. For the case of M, « (N/2-1), m(t) will be approximating the low
frequency content of x(r), i.e., its mean variation. The value of M, is found such that
the difference hetween the original history and truncated Fourier scries yields a zero
mean process, n(t).

a(t) = x(t)—m(t) (3)
To find the parameter of My one proposcd method is due to Buxbaum and Zaschel
{1977), who analyse the dynamic system to decide which part of the response spectrum is
due to stationary and nonstationary loadings. Filtering in the frequency domain allows
one (o separate the two components. This, however, is often difficult as information
regarding the dynamic system charactcristics and the actual input spectrum are seidom
available. Therefore, to determine whether the series n(#) 15 indeed stationary with
respect to its mean value, the methods of nonparametric statistics are used.

The remaining stationary component, n{f), then can be represented by an ARMA
model of appropriate order. The selection of the proper ARMA model 1s made such that a
parsimonious model, i.e. a model that uses the smallest necessary number of parameters
to approximately account for correlations, is chosen to present the random series.

2.3 ARMA models

There are two components of an ARMA model: (1) the autoregressive part, and (2) the
moving average part. The autoregressive part represents the dependence of the output
variable (obscrved variable)} on its own past. For example, a second-order autoregressive
model, denoled AR(2), is defined as follows:
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a(t) = a(t —1)— pon(t —1) = (1) (4)

where n(f} is the variable under observation (output variable), @) is the shock or
driving noise (input variable), and ¢ and ¢: arc the autoregressive parameters, The
parametcer ¢ refers to discrete points in time, 7 €(1, 2, 3, ...} and is a nominal one, since it
is only used to characterize the time dependence in the data, which is considered valid
irrespective of any particular value of £. In the above model, the input process a(r) is
assumed to be an independently and identically distributed random process with zero
mean and constant variance ¢2. That is, a(r) itself is considered to be non-
autoregressive is considered to be non-autoregressive.

The moving average part of the ARMA models represents the dependence of the
output process on the past values of the input process. For example, the following is a
pure moving average model of order two, denoted as MA(2):

n(ty=a(t)— Ga(t—1)—Ga(t-2) (5)
where & and 8 are the moving average parameters. The above model is a second-order

moving average model, because a current value of the outpul depends on the past two

values of the input process.
The full ARMA model is formed by a combination of the autoregressive and moving

average parts. For example, the following i1s an example of a sccond-order auloregressive
and first order moving average mode), denoted as ARMA(2,1):

n(t)— gin{t—1)— pan(t - 2) = a(r)— Gra(z - 1) (6}

where the above equation represents second-order dynamics, with two being the order of
the autoregressive part. Typically, any physical process which is a result of a second-
order governing differential equation in time can be represented by the above cquation.
High order ARMA models can be used to represent more complex dynamics. The
ARMA(p,q) model, therefore, is expressed as:
n(2)— & n(t—1) = don(t - 2)~.. ~4pn(t— p)
(7)
=a(t)—a(t~1)~0za(r—2)-...—0,a(r—g)

where the autoregressive parameters, ¢1;i=1L 2, ..p, and the moving average
parameters, 6y;i=1,2,...q, arc cstimated from the observed data using standard

statistical procedures (Box and Jenkins, 1976).

The estimation of ARMA parameters is based on a method of moments procedure.
The autocorrelation function of the input record, n{1} is obtained; this is referved to as the
target spectrum, where the autocorrelation function of a process is a measure of
correlation among data points as a function of their separation, or lag time. Thc ARMA
parameters are estimated such that the autocorrelation function of the respective ARMA
model is as close to the target spectrum as possible.

In ARMA modelling the proper model order (p,q) is found to be the onc that
transforms the observed data, n(r), to an uncorrelated series, a(f). Pandit (1973) and
Akaike (1974) developed criteria based on rigorous statistical tests to determine the
apptopriate model order. Unfortunately, for a large number of data points, these criteria
tend to be too restrictive, i.e. they demand models of very large order.

To overcome this problemmn, a criterion was developed which selects among a group of
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possible models the one which would lead 1o a fatigue lifc similar to the one of the
observed series while using the smallest number of paramelers necessary. This ensures
that all dynamic characteristics, relevant for fatigue load simulation are present in a
chosen ARMA model (Leser, 1953).

3 Nonparametric statistics

To determine whether a sequence of observations is of random nature, statistical tests can
be performed. If no information about the distribution function of the sequence is
available, a nonparametric test is desired because no assumptions regarding distributions
are necessary. In nonparametric inference, the methods arc based only on the relative
occurrence of an underlying event. Therefore, information or assumptions regarding the
population are not necessary to assess whether a sequence is of random nature or contains
determimstic trends (Gibbons, 1971).

Three nonparametric tests are presented here to determine the stationarity of n(t). In
general, given a time series of length N, one divides this scries inte N, intervals cach
containing N, points, such that ¥ =N, x N, The mean value is calculated for cach
interval. The interval means, pt;, are considered as the sequence of observations to be
tested for randomness.

The first test is based on the variables Ry, the total number of runs. A single run is
defined as successive observations of the interval mean below or above the median and is
completed when two succeeding observations are separated by the median. This is the
best known and most general run test. The test is focused on a single quantity, the
median, and gives a general measure of randomness or lack thereof without identifying a
trend or cyclical pattern. Hald (1952) derives the mean and variance for the expected
number of Tuns for a true random sequence. For the casc where the total number of runs,
Rr, is larger than twenty, the distribution of Ry is approximately normal. For a sequence
of length N;, the expected value and variance for Ry then are defined as (Hald, 1952)

N, +2
E{R )= g, = 2L ®
1
N e = ©
i

Confidence limits for the expected number of runs can be established. A hypothesis
test is based on the comparison of the observed number of runs, rr, and the theorctically

expected number of runs, 4 R, Confidence limits at level o are dcfined as (Hald, 1952)

(7 = 2as208, ) <tia, <(r7+20s20%, ) (10)

where 742 18 defined such that

1—-a/2= J'e“%‘zdx (1)
Zall

If the observed number of runs, ry, falls inside the confidence limits, Equation (10),



472 C. Leser, S. Thangjitham and N.E. Dowling

for a chosen confidence level, usually & = (0.95, the hypothesis of the sequence being
random is accepted, while for the case where #p falls outside these limits the observed

sequence must be considered deterministic.
The second run test is based on the variable {or the length of the longest run, K. In a
random sequence of length %,, the longest of the runs described above follows the

relation (Hald, 1952)

N,EK-KlH_fzigkuogﬂ(z)(—zm<Z<za,2)) (12)
and
Lotz
P(~24py <Z<24p)= Ie_%"’:dx (13)

“ T2

Since Equation (12) cannot be solved directly for K, the test is indirect. The
hypothesis test at confidence level o for the obscrved longest run requires checking
whether the series is sufficiently Tong to admil a run of observed length, &, in a random
sequence of length Ny. This test is best suited for identifying trends in a sequence.

Finally, tests based on the number of runs up and down, Ryp, provide another
measure of randomness ol a sequence of interval means. The magnitude of each
observation is compared with that of the immediately preceding observation. If the next
element is larger, a run up is staried, and if smaller, a run down. A decision concerning
randomness is then based on the number of these runs, while the length is not considered.
This test traces the whole sequence ol observations relative to each other, in contrast to
the test based on the total number of runs. Therefore, a pertodic {luctuation (cyclic
content) of the observed sequence can be detected through the number or runs up and
down. A hypothesis lest can be derived {or measuring whether the observed number of
runs, ryp, significantly deviates {rom the expected value for a random sequence, fegy, -
The expected value and variance ol the number of runs up and down for a random
sequence of length N; are (Hald, 1952}

E[Ryp]=ttx,, =§(2Nf1)) (14)

E[(RUD My, )1 =var[Ryp|= 07 = %(lﬁN] ~29) (15)
Confidence limits at level ¢ are delined as

(?’un ~ Zu12OR,, ) <Hp, < (r{u) + 20208, ) (16)

Each run test detects a certain form of deviation from the case of a random sequence
of interval means. Too few runs, runs of excessive length, or too many runs can be used
as statistical criteria for the rejection of the hypothesis of randomness of the sequence of
H,. Therefore, all tests should be considered, and need to be passed successfully, for a

sequence {in this study, n(#)) to be considered stalionary.
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4 Ensemble generation

Successful load modelling for the purpose of realistic fatigue testing asks for an ensemble
of load histories where each realization (history) is representative of the actual loading. In
practice, it is often difficolt to obtain sufficient information about the ensemble. It is
common to have only a limited number of representative records for a particular loading
situation. Therefore it is desired, given a single loading, to obtain a large number of
realizations which are not identical, but contain variations which have statistical
characteristics identical to the original history.

The proposed model of Equation (3) allows for an extension from a single obscrved
record to an ensemble in all its components. The ARMA modcls employed to account for
the stationary variations of the loads are of stochastic nature. It is not a single time series
that is embodied in a particular set of ARMA paramelers, but a random process, which
for each generation yields a different realization with identical stochastic characteristics,
but a different sequence and values of relative extrema.

The ensemble of mean variations can be obtained using a method introduced by Rice
(1944). Tt is shown that a time series, y(r), of a random signal can be described by its

discrete Fourier transform

N-1

1 = .
¥t = an +k§][ak cos(mUkAtr - ak) + b, sm(wukAtt - B, )] (17

where ai, bg, o , At and N were defined above and ot and Pi arc two random phase

angles distributed uniformly over the interval (0, 2m).

This representations yield an ergodic random process, i.e. a process that is stationary,
such that an average taken over time is identical 10 an average taken across the cnsemble
of historics. Histories with a different variation for cach simulation of Equation (17) arc
obtained, yet the overall characteristics, such as the frequency content and variance, are
preserved. A stochastic description of the process y(r) is obtained.

This formulation of a random process can be used 10 derive an ensemble of mean
variations by modifying the mean description in Equation (2} in two ways. First, similarly
to Equation (17) random phase angles are added to the mcan description of Equation (2).
This leads to mean representations whose spectral content will be preserved, but the
sequence of events, i.e. the occurrence of a rclative or absolute maximum, will be
different for each simulation. While these records are statistically identical it might be
desirable to obtain an ensemble of mean variations where cach realization will have a
prescribed similarity (correlation) to the original mean variation. This would yield more
realistic load simulations as the sequence of major events, such as relative extrema, can
be preserved to any desired degree.

This objective Teads to a second modification of Equation (2). The prescribed
correlation between original mean content and the simulated mecan of the model is
obtained through limiting the number of terms which carry a random phase angle in
Equation (17). Instead of &, and B, being random phase angles for all k, &, and B,

will be restricted such that

U for kE(Nz+l,Mﬂ) (18)

P10 for ke(on,)
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and the mean description becomes
M,
1
my (1)= S+ E[ak cos(wokAtt — o ) + b, sin{ @okAn — B, )] (19)
k=0

where N, indicates the number of terms with zero phase angles and My, and a; and b;
were defined in Equation (2), and U indicates the uniform distribution defined on the
interval (0,2x). This definition of «; and B, allows for a systematic characterization of
the correlation between the deterministic mean representation, m(t), and the ensemble of
random mean variations, m N, (1).

From a strict theoretical standpoint, the random process of Equation (19) with the
definition of ¢, and f; of Equation (18) yields a non-ergodic process. This is due to the

fact that the process contains deterministic components, i.e. terms with zero phase angles.
However, the proposed method of using a limited number of random phase angles

conserves the frequency content of the deterministic mean variation.
In order to measure the correlation between the deterministic mean, m(f), and a

simulated mean, m,, (1}, a correlation coefficient is obtained via the customary definition
E|mlt)mpy, {2
[} (1) -

" e ()

This definition implies that for py _q deterministic mean and simulated mean are
uncorrelated, while for py _; they are identical. In general, the larger the value of py,

the closer the resemblance between deterininistic and simulated mean.

5 Results and discussion

In this paper, fatigue life calculations (MTS Systems Corporation, 1991) are presented for
SAE 1045 steel, subjected to both original and reconstructed strain histories. Table 1
shows the material constants (Kurath er al., 1989). The local strain approach is employed
in life calculations. Consequently, the analysis predicts the initiation of easily detectable
engineering size cracks.

Table 1 Material properties for SAE 1045 steel.

Modulus of elasticity, E(MPa) 202000.0

Fatigue strength coefficient, 6y (MPa) 043.0

Cyclic strength coefficient, H”' (MPa) 1258.0
0.208

Cyeclic strain hardening exponent, n’
Fatigue strength exponent, & —0.092
Fatigue ductility coefficient, £¢ 0.260
Fatigue ductility exponent, ¢ —0.445
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For the purpose of life analysis, a typical history of nonstationary strain gauge data
taken from a particular component of a ground vehicle travelling on a rough road is
chosen as the random fatigue load history in this study, Figure 1(a). The history is
considered to be observed at a critical location such as the notch root in an engineering
component. This history, containing 10 240 points, is from now on referred to as a block.
Without Joss of generality, the load history has been normalized such that its overall
mean value is zero and its dimensionless root mean square (RMS) value is equal to unity.
Furthermore, the sampling rate is assumed to have been one point per second. The
normalized minimum and maximum are found to be —3.7850 and 2.8663, respectively,
while the skewness coefficient is computed as —0.3074, which indicates that more data
points fall below the zero-mean than above it.
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Figure 1 Times series plots for (a) original record, (b} deterministic mean presentation, () mean
removed record, (d) ARMA model simulation, and (e) reconstruction.
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According to the employed model of Equation (1), the history is decomposed into its
two components, m(t) and a(t}. To model the variation of the mean in a deterministic

way, m(t), various Fouricr series with increasing numbers of terms are formed, giving
the tentative mean descriptions. The dillerence, a(t). of the original record and each
mean description, one of which 1s shown in Figure 1(b), is obtained. These dilferences,
such as Figure 1{c), are then analyscd for deviations {rom being a zero-mean process. The
best mean description is chosen as the one that renders n(r) stationary using the Fourier
series with the least number of terms.

Next, the mean-removed record, n(1), is divided into N, intervals, for each of which
the interval mean is determined. These intervals need to be long enough to give reliable
estimates for the mean, yelt short cnough to be able to delect vaniations in the mean of the
whole record. Furthermore, for proper statistical analysis, it is desirable to treat the
estimates of the interval means as if they were uncorrelated to each other. No common
rle has been established in the literature as to what this interval length should be. One
method is provided via the autocorrelation function of the signal (Bendat and Piersol,
1986). The autocorrelation for the scries in question vanishes for a lag time of
approximately 60 points and more. This indicates that data points separated by more than
60 points are not correlated.

Another argument to support the choice of interval size can be made using inference
methods from classical statistics. To establish the necessary number of data points to
estimate the interval mean, f;, a Studenl’s t-test can be used (Miller and Frcund, 1977)

5, s
Xty o e | S S| Kbty e 21
[ i o N, ]\/FP- u ( Ny 1\/N_P] (21)

where X; is the estimated interval mean and 5; is the square root of the unknown interval
variance and fy w1 indicate Student’s t-distribution with o level of confidence and
Np—1 degrees of freedom. An expression indicating the relative maximum error in
estimation of |1 can be derived as

-fl' — U

. . I(LN o—|
relative maximum error = ’ YRR - (22)
1

L

For a chosen value of & = 0.9 and an acceptable relative maximum error of 20% of

H;, the required number of sample points is Np =64, This leads to the choice of using
N; =160 intervals, each containing Np =64 points. However, since this choice is not
unique, tests are also performed for N, =128 and N, = 80.

Run tests based on the total number of runs, the number of runs up and down, and the

length of the longest run, are performed on the sequence of interval means calculated
from n(r). Table 2. This assures that a variety of deviations from the expected random

behaviour of this sequence can be detected.
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Table 2 Results of run tests for mean modelling for different values of M [t (italies = failure of test,

bold passed all tests for given Np).

Mﬂ 68<r7<93 95<FUD<1 16 N} =160 53<r-,-76 75<FUD<94 N}’ =128

ry rup K rr Yup k

5 27 78 & 19 58 5
i0 54 &8 7 43 o 5
15 71 88 7 60 T8 5
20 72 a2 6 7 76 4
25 33 98 4 75 86 3
30 o4 106 3 &4 86 4
35 105 106 3 87 Q2 3
40 96 102 3 80 87 3
45 115 117 3 92 97 3
5G 127 123 3 106 111 3

For the case where Np =64, the 95% (o = 0.95) confidence Innits for the total
number of runs, Hg, » are (68<,uRT <93), while the number of runs up and down, Hg, >

covers the range (95« Mg, <116). Similarly for the case where Np =80, the 95%
confidence limits for the total number of runs. Ry » SPAN Over the range (53< pp  <76),
while the number of runs up and down covers the range (75<u Ry .94). The length of the

longest admissible run, K, according 1o Equation (12) for a random sequence of length

160 is 6, while for a sequence of length 128, the maximum length is 5.
For the case with Np =64, the only value for which all run tests are passed is

M, =25. For the run tests based on Np =80, all run test are passed by values for M, of
15 and 25. Therefore, a total number of M, =25 Fourier series cocfiicients 1s deemed
appropriate for a sufficient mean description (o render the remaining signal stationary
with respect to its mean valve. See also Figure 1{b) for the deterministic mean model,
m(t), ancl Figure 1(c) for the mean removed record, n(?).

The stationary sequence will be presented by an ARMA model, Figure 1{d). An
ARMA(10,0) model, i.e. ten autorcgressive paramelers and ¢cro moving average
parameters, was deemed suitable to represent n(f) accurately and concisely. A complete
simulation according to Equation (1) using the stationary record obtained from the
selected ARMA model and the chosen mean representation is shown in Figure 1(2).

An ensemble of mean variations was oblained according to Equation (19). Depending
on the parameter N, correlations as defined 1n Equation (20} between the deterministic
mean variation, m(r), and 64 simulations wcere calculated to obtain a reliable estimate.
Figure 2 shows thesc results, Figures 3{b-c) show a set of lour mean variations of
different correlation with the deterministic mean. These records werce obtained for
correlation values of py, = (0.95, 0.74, 0.36) corresponding to values for N, = (18, 6, 4).
Finally, 2 random phase angle was added 10 each terin, N; =0, so that the deterministic
mean and simulated mean are uncorretated. Figures 3(f-g) show these simulations. These
simulated records are drastically different from the original. This method, therefore,
allows one to obtain mean simulations with any desired closeness to the deterministic

mean.
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Figure 2 Corrclation py, , between deterministic and ensemble mean for different values N, .
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Figure 3 Time series plots for (a) deterministic mean record and mean ensemble presentations
correlated to the original, (b) correlated at p N, = 959, (c) correlated at p N, = 95%, (d) correlated

at py, =74%, (¢) correlated at py_ = 56%, (f} correlated at p n, = 0%, and (g) another
realization correlated at py_ = 0%.
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In the following analysis, the vanations of [atigue life as a function of the RMS sirain
jevel are considered (Dowling, 1972, and Dowling et ¢k, 1977, and MTS Systems
Corporation, 1991), the so called strain life curve. Consequently, the strain (load)
histories corresponding to varions RMS levels are required. This can be accomplished by
simply multiplying the normalized load history and its regeneration with a given RMS
value. Strain life curves were obtained for 64 simulations and averaged. Figure 4 shows
the comparison for various RMS strain levels ol original record and average of
simulation. The closeness of original and simulation for a wide range of strain levels
renders this simulation successful for both low cycle and high cycle fatigue, i.e. short and
long life applications can be simulated with the above regeneration.

Rainflow cycle distributions and the associated damage distributions are shown in
Figure 5 for one typical RMS strain level. The visual comparison of rainflow cycle
distributions for the original and reconstructed record indicates good agreement for the
various ranges and means represented in the history. This indicates that the simulation
was successful in faithfully reconstructing bhoth the large number of cycles with small
range as well as approximately the few cycles with large range.

0.40
- ——— Qriginal
030 - - - - Reconstruction
= B
41
B 20
45}
=
o 8
0.10 |-
0.00 | | I |
10° 107 10° 10* 10° 10°

Life in Blocks

Figure 4 Plot of strain life curves calevlated for original record and average of 64
reconstructions.

To measure the variability in fatigue hife, 64 simulations were performed where both
mean and random content were gencrated independently. The fatigue life was calcnlated
for each simulation to obtain the mean. standard devialion, and cocfficient of variation
(ratio of standard deviation and mean). The variability of fatiguc life for different
correlation values, py,, of the mean realizalion is shown in Figure 6.
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Figure 5 Plot of rainflow and damage histograms for original and a regenerated record at RMS

strain level 0.1%.

For the case of smaller values of py. the variability in life is larger due to the
contribution of the larger variations in mean. For the limiting case of py. =1, 1.e. where

the deterministic mean was used, the variability is smallest. The variability in life for all
cases of py, is larger for smaller value of RMS strain level. This is due to the fact that as

the strain level decreases the large number of rainflow cycles with small range contribute
less to the overall damage (see also Figure 5). Therefore, only a few large range cycles
contribute to fatigue damage, consequently the variabilily is larger.
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Figure 6 Plot of variability of fatigue life versus RMS strain level for mean realization of various
correlations, Py, , to deterministic mcan.

6 Summary

A vehicle load history model for {atigue analysis and (esting is represented. Both
nonstationarities with respect to mean and stationary random content arc concisely
modelled. The mean variation can be treated in cither a determunistic or a stochastic
manner, where the stochastic case is adaptive in that desired corrclations between
simulated and original record can be obtained. The generation of an ensemblc is provided
for by each component in the proposcd model. The frequency content of the original
loading is preserved in the simulation, allowing the application to realistic dynamic and
multiaxial loadings. Moreaver, the sequence of events, which can be a factor in fatigue
life, is preserved in a stalistical sensc. Infinitely long records can be simulated with
minimal computer storage in real time. The description uses fewer parameters than any
competing methad of vehicle loading description,
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