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ABSTRACT

This paper presents the results of a study of using a
neural network black box model of a shock absorber of
an ATV (All Terrain Vehicle, four wheel drive, off road,
single person vehicle) for accurate load modeling. This
study is part of a larger investigation into the
dynamic behavior and associated fatigue of an ATV
vehicle, which is conducted under the auspices of the
Fatigue Design and Evaluation Committee of SAE of
North America (www.fatigue.org).

The general objectives are todevelop new
correlated methodologies that will allow engineers to
predict the durability of components of proposed vehicles
by means of a "digital prototype" simulation. Current
state of the art multi body dynamics predictions use
linear frequency response functions or non-linear
polynomial approximations to describe the behavior of
non-linear suspension components such as shock
absorbers or bushings.

The proposed method yields more accurate
predictions due to the fact that both the non-linear and
hysteretic behavior of the shock absorber are modeled.
This paper demonstrates how neural network black box
technologies, particularly in the form of the Empirical
Dynamics Models, can be used for accurate prediction of
shock absorber loads encountered by a vehicle and the
potential improvement in fatigue life predictions under
this approach.

INTRODUCTION
A number of technologies exist today to predict

analytically the durability of automotive structures
(components, systems and full vehicles) prior to building

MTS Systems Corporation

actual physical specimen. To improve the predictive
capabilities the Fatigue Design and Evaluation (FD&E)
Committee of the Society of Automotive Engineers
(SAE) of North America has elected to investigate what
technologies are available today and aid the engineering
community in developing improved methods for
predicting fatigue life of complex structures [1]. To
support this project, the authors of this paper present the
study of neural network black box modeling for accurate
load description of components under complex loading.
The technique employed can be used to predict the
behavior of a variety of dynamically loaded components
with inherent complex behavior. In particular, the
response behavior of a shock absorber under random
loading is predicted and compared to a measured
response and predictions achieved via currently
commonly used methods.

FATIGUE DESIGN AND EVALUATION
COMMITTEE (FD&E) OF THE SAE — The FD&E
committee is dedicated to improve the understanding of
fatigue processes in materials and engineering structures.
The committee meets twice per year in different locations
and also hosts a special session during the annual SAE
World Congress in Detroit. The committee consists of
members from academia, research institutes and industry
and is open to the public. Contributions to projects are
made through monetary and labor donations. All results
are placed in the public domain.

Past contributions in the field of fatigue prediction
have been published by the committee through a series of
handbooks and conference proceedings, e.g. [2], [3] and
[4]. Under it’s latest effort the committee has elected to
advance the state of the art in predicting the fatigue life
of structural components and systems through an



investigation entitled “Digital Prototypes for Durability”.
The mission statement for this project states [1]:

Systematically apply, develop, integrate, and
validate all the tools and processes necessary to
evaluate the structural durability of a vehicle by
means of a digital simulation.

The objectives were established as [1]:

Pool the resources of the committee to evaluate
the current simulation processes as they relate
to structural durability.

Foster development of new tools and processes.
Transfer the technology to users.

To achieve these objectives it was decided to [1]:

Select an inexpensive, simple, existing vehicle that
can be easily modeled with respect to vehicle
dynamics and component stress-strain behavior.
Create a computer model of the vehicle and "drive"
it over a digital proving ground route. Test the
actual vehicle on the real course and measure the
component loads, test the component durability,
and then compare the digital predictions with the
test results. Assess where models need to be
improved and fix the deficient theory. After good
correlation has been achieved, try changing some
components, through light weight material
substitutions or material processing changes, and
then re-test and re-analyze for prove-out of the
digital prototype procedure.

The vehicle chosen is a Honda ATV (All Terrain
Vehicle), Model TRX 300 4x4 (Figure 1). This type of
vehicle was chosen as it is relatively inexpensive to
purchase, maintain, and transport, yet it’s frame and
suspension are complex enough to realistically represent
components that are under investigation in commercial
projects at manufactures of vehicles, systems and
components. This motivates a broad participation from
both OEMs, suppliers and academic parties that have the
most to gain from the expected results. The Honda
Corporation is not actively involved in the project at the
current time.

The main venue for information exchange is via the
website  the  committee  has  established at
www.fatigue.org. Results of the studies conducted to
date are archived at this website. These consists most
notably of road load data from a data acquisition exercise
with wheel force transducers under realistic operating
conditions, FEA models, modal studies, flexible body
dynamic simulations. Finally, a number of physical tests

Figure 1. Photo of Honda ATV

of components, sub systems and a full vehicle test on a
spindle coupled road simulator have been documented.

BLACK BOX NEURAL NETWORK MODELING
TECHNIQUE

Methods currently in use for modeling the behavior
of suspension components such as dampers and bushings
do not account for the full complexity that these
components exhibit. Most notably, the inherent non-
linearity and frequency dependent behavior can often not
be described adequately through ‘first principles’
modeling, i.e. the formulation of the geometry, the
material properties, and general differential equations
relating the dynamic response of a component to any
input. The ‘first principles’ approach, also commonly
referred to as white box modeling, has shown great
success for a number of applications of complex
structures and systems. However, due the lack of
understanding of the influence of friction, difficulty in
defining and measuring adequate material properties for
elastomers and the accurate formulation of equations for
complex fluid dynamics white box models of the
aforementioned suspension components are inadequate to
accurately predict their dynamic behavior.

To improve on the predictive ability of the dynamic
models, while keeping the computational effort at a
minimum when using the model in more complex
simulations of sub-systems or full vehicle models, the
authors present a method that uses black box neural
network models based on physical measurements
performed on the part to be modeled. This method has
been described in detail in [5] and is from here on
referred to as Empirical Dynamics Modeling (EDM) as it
is based on measured, ‘empirical’ data and typically
applied to the modeling of dynamically loaded
components. Empirical Dynamics and EDM are
trademarks of MTS Systems Corporation.



A neural network is constructed of a number of
units called ‘neurons’, where each neuron (Figure 2)
takes a series of various inputs u;, and multiplies them by
constant weights w, sums these along with a constant

bias term, and then applies the result to a nonlinear
‘activation’ function to yield an output value y.

inputs .
activation

function
output

— | y
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bias

Figure 2. Neuron, Block Diagram

A neural network is constructed by connecting a
number of neurons to the same inputs to form a ‘layer’
(Figure 3), and by using the outputs of one layer as inputs
to another layer. This structure is called a multilayer
perceptron (Figure 4).
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Figure 3. Neurons formed into a layer
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Figure 4. Multilayer perceptron

To represent a dynamic input-output relationship of
a component not only current inputs and outputs but also
a number of past inputs and outputs will be connected via

a neural network. This is referred to as a tapped delay

structure and Figure 5 below depicts this using the z™'

transform notation.
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Figure 5. Tapped Delay Structure for Neural Network

The weights of the network are estimated by a
‘training’ process, which is essentially a minimum square
error estimation algorithm finding the set of weights that
minimizes the error between measured and predicted
data. One part of the measured data (training data) is used
to estimate the weights of the network, Figure 6.

measured

measured
output

input training data

model generation

Figure 6. Model generation

While another part of the data (validation data) is
used to calculate the error between predicted output and
measured output. The learning process is typically
terminated, when no significant reduction of the error
between measured and predicted output can be achieved,
Figure 7.



measured validation data

model validation

Figure 7. Model validation

The optimal structure of the network depends on
the dynamic characteristics such as inherent hysteresis,
excitation bandwidth, and sampling frequency of the
training data.

Advantages of the black box modeling technique
are the high accuracy in predicting output and the
numerical efficiency in generating the predicted output.
Because the black box models consist of a set of
algebraic equations, the predicted output can be
generated very fast. White box models, in contrast,
typically require the solution of a set of differential
equations, which often are solved in an iterative manner,
requiring longer execution time.

SHOCK ABSORBER EMPIRICAL DYNAMICS
MODEL

To demonstrate the efficacy of the Empirical
Dynamics Modeling method a shock absorber of the
ATV was studied. The first step was to mount the
specimen into a shock absorber characterization machine
of type MTS 850. The specimen (see Figure 8) was then
subjected to a “training-validation” random displacement
input time history.

Figure 8. Photo ATV shock absorber

This history was a 55 seconds long white noise
record with an auto-spectral density amplitude shaped by

1/ £? and an excitation bandwidth of 0-60 Hz. This type
of signal was chosen as it “excites” a broad band of

frequencies that contribute to fatigue damage when the
component is operating under typical road load inputs.

The corresponding achieved displacements and reaction
forces were recorded (see Figures 9, 10, 11).
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Figure 9. Measured training-validation data,
displacement input time signal
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Figure 10. Measured training-validation data, force
output time signal
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Figure 11. Measured training-validation data,
displacement input vs. force output signal



A proprietary neural network structure [6] that was
previously optimized for automotive shock absorbers was
used to model the dynamic behavior of this specimen.
Measured input and output history of the training-
validation signal were used to estimate the actual
weighting factors of the network.

To demonstrate the accuracy of the model an
additional “prediction” random time history was
generated (same excitation bandwidth and spectral shape
as the training-validation data, length of 5 seconds, and
an amplitude range that was 75% of that of the training
data) and used as an input to the specimen on the test
stand. The range of the prediction data is typically chosen
less than the training data because the ED models cannot
accurately predict wave forms with amplitudes larger
than what was used to develop the model. The actual
measured response to this prediction input signal was
then compared to:

a) Predicted response by a linear transfer function
estimate (frequency response function, FRF)

b) Predicted response by the polynomial fit
¢) Predicted response by the ED model
FATIGUE LIFE CALCULATION

To demonstrate the sensitivity with respect to
fatigue life when predicting loads, the authors present
fatigue life calculations for a generic fictitious
component. This could be some part of the suspension or
frame structure. This component is considered to be
loaded directly proportional to the measured and
predicted force output history of the shock absorber. The
local strain approach is employed in life calculations, and
therefore predicts the initiation of easily detectable
engineering size cracks. The history is considered to be
observed at a critical location such as the notch root of
the component.

Fatigue life was calculated for a steel of type SAE
1045 (see Table 1 according to [7]) and a stress
concentration factor equal to 3. The actual measured
response for the prediction history was scaled such that a

fatigue life of 10* repetitions (blocks) to failure was
achieved and then considered to be the nominal value for
fatigue life. All other fatigue life values are reported as a
fraction or multiple of the value for the measured time
history.

Modulus of Elasticity, £ (MPa) 202000

Fatigue Strength coefficient, o (MPa) 948

Cyclic strength coefficient, k* (MPa) 1258

Cyclic strain hardening exponent, n’ 0.208
Fatigue Strength exponent, b -0.092
Fatigue ductility coefficient, £’ 0.260
Fatigue ductility exponent, ¢ -0.445

Table 1. Material Properties SAE 1045 Steel

When the local strain approach (a fairly typical
procedure, described in [8] and elsewhere) is employed
in fatigue analysis, it requires both the stable cyclic
stress-strain curve and the strain-life curve for the
material. These are given by

£,=0,/E+(o,/K)" (1)
O-, ’ C
&, :%(2N0)b+8f(2N0) (2)

where €, and 0, are the strain and stress amplitudes,
respectively, £ is the modulus of elasticity, N is the life
in cycles for the case of zero mean stress, and the
parameters £, O, K, n', b and ¢ are material

constants.

The Smith-Watson-Topper model for mean stresses
is used, in particular, the strain amplitude is coupled with
the maximum stress to incorporate mean stress effects.
The equation describing this model is:

’2
oo = M) TN )

where the right hand side is based on the strain life curve
generated from completely reversed controlled strain
testing.

For histories with varying amplitudes, the method
of rainflow cycle counting has proven to be successful to
identify full load reversals, or hysteresis loops, that are
fatigue damage relevant. This method is well
documented (e.g. [9]) and not further described herein.
According to the Palmgren-Miner rule ([10], [11]), the
damage, D,, that corresponds to a particular rainflow

cycle, is calculated from the cycle ratio by



D, = ZI “

where n, and N, are the number of cycles counted and

the number of cycles to failure for the given rainflow
cycle, respectively. The component life, N, is then

calculated from the induced damage due to all rainflow
cycles as

ez

where N, is given in terms of the number of blocks
(repetitions) of the load history.

RESULTS

After exciting the specimen with the training-
validation input signal and measuring the response this
data was used to estimate:

a) Least square fit by a linear transfer function
(commonly referred to as a frequency response
function, FRF), see Figure 12.

b) Least square polynomial fit, a polynomial of order
10 was found to be efficient in the sense that the
residual error did not significantly decline for higher
orders, see Figure 13

c¢) Empirical Dynamics model, where the model was
built using a standard Pentium PC with a speed of
500 MHZ. After 10 minutes of calculation time an
RMS error of 0.0522 kN was achieved and not
further reduced during more training.
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Figure 12. Frequency Response Function (FRF) fit of
training-validation data
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Figure 13. Polynomial fit of training-validation data

After all models have been built, the prediction
displacement input time history is applied to the
specimen and the corresponding force response is
measured, Figures 14, 15, 16.
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Figure 14. Measured “prediction” displacement input
time history
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Figure 15. Measured “prediction” force output time
history
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Figure 16. Measured displacement input vs. measured
force output history for prediction data set

Subsequently, the prediction input history is applied
to the FRF-model, polynomial-model and ED model and
the predicted outputs are calculated. The following plots
show the predictive capabilities of the three models by
comparing the measured and predicted output for the
prediction data set.

A: TIME DOMAIN COMPARISONS — The FRF
fit traces maxima and minima well with respect to phase
but underestimates the amplitudes due to the fact it is
only a linear presentation of a component that exhibits
non-linear behavior. The polynomial fit can be seen as
an approximation of the “running average” of the history,
but it misses individual maxima and minima due to the
fact that it does not capture the inherent hysteresis in the
component behavior. The ED model prediction traces
the measured output history so closely that the lines
practically overlap and, therefore, cannot easily be
distinguished in Figure 17 below.
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Figure 17. Portion of Measured and predicted time
histories for FRF, Polynomial and ED model

B: INPUT VS. OUTPUT COMPARISONS — The
following figures should be compared to Figure 16 to

demonstrate how well each fit captures the input-output
relationship.
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Figure 18. Measured displacement input vs. FRF fit
predicted force output history
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Figure 19. Measured displacement input vs. polynomial
fit predicted force output history
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Figure 20. Measured displacement input vs. ED model
predicted force output history

C: FATIGUE LIFE COMPARISONS - The
following table summarizes the fatigue predictions.
Fatigue life for the FRF fit is somewhat longer as the
peak amplitudes were slightly underestimated which is



due to the fact that the FRF fit is linear in nature and does
not represent the nonlinear increase in force amplitude
for displacement extremes. The polynomial fit predicts a
significantly longer life as it averages between extreme
values in the time domain (see Figure 19) and, therefore,
predicts significantly fewer cycles than the number that
was present in the measured data. The ED model
prediction is close to the one for the measured history.

History Type Fatigue Life
(Force Output)
Measured 1
FRF Fit 8.20
Polynomial Fit 308.70
Empirical Dynamics Model 0.98

Table 2. Fatigue life estimate for measured and predicted
histories

CONCLUSION

The method of modeling the complex dynamic
behavior of a shock absorber via an empirical dynamics
black box models shows much improved predictive
capability when compared to currently used methods
such as linear transfer function models or nonlinear
polynomial fitting functions. Use of this method allows
for the numerically efficient, high fidelity, description of
the dynamic behavior of components such as shock
absorbers that have defied accurate modeling in the past.
This is particularly valuable for the analytical evaluation
of systems in multi-body dynamics models where an
accurate load prediction for each component is required
to obtain an accurate system model for fatigue life
predictions.
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