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ABSTRACT 

This paper presents the results of a study of using a 
neural network black box model of a shock absorber of 
an ATV (All Terrain Vehicle, four wheel drive, off road, 
single person vehicle) for accurate load modeling.  This 
study is part of a larger investigation into the 
dynamic behavior and associated fatigue of an ATV 
vehicle, which is conducted under the auspices of the 
Fatigue Design and Evaluation Committee of SAE of 
North America (www.fatigue.org).  

The general objectives are to develop new 
correlated methodologies that will allow engineers to 
predict the durability of components of proposed vehicles 
by means of a "digital prototype" simulation. Current 
state of the art multi body dynamics predictions use 
linear frequency response functions or non-linear 
polynomial approximations to describe the behavior of 
non-linear suspension components such as shock 
absorbers or bushings. 

The proposed method yields more accurate 
predictions due to the fact that both the non-linear and 
hysteretic behavior of the shock absorber are modeled.  
This paper demonstrates how neural network black box 
technologies, particularly in the form of the Empirical 
Dynamics Models, can be used for accurate prediction of 
shock absorber loads encountered by a vehicle and the 
potential improvement in fatigue life predictions under 
this approach. 

INTRODUCTION 

A number of technologies exist today to predict 
analytically the durability of automotive structures 
(components, systems and full vehicles) prior to building 

actual physical specimen.  To improve the predictive 
capabilities the Fatigue Design and Evaluation (FD&E) 
Committee of the Society of Automotive Engineers 
(SAE) of North America has elected to investigate what 
technologies are available today and aid the engineering 
community in developing improved methods for 
predicting fatigue life of complex structures [1].  To 
support this project, the authors of this paper present the 
study of neural network black box modeling for accurate 
load description of components under complex loading.  
The technique employed can be used to predict the 
behavior of a variety of dynamically loaded components 
with inherent complex behavior. In particular, the 
response behavior of a shock absorber under random 
loading is predicted and compared to a measured 
response and predictions achieved via currently 
commonly used methods. 

FATIGUE DESIGN AND EVALUATION 
COMMITTEE (FD&E) OF THE SAE – The FD&E 
committee is dedicated to improve the understanding of 
fatigue processes in materials and engineering structures.  
The committee meets twice per year in different locations 
and also hosts a special session during the annual SAE 
World Congress in Detroit.  The committee consists of 
members from academia, research institutes and industry 
and is open to the public.  Contributions to projects are 
made through monetary and labor donations.  All results 
are placed in the public domain.  

Past contributions in the field of fatigue prediction 
have been published by the committee through a series of 
handbooks and conference proceedings, e.g. [2], [3] and 
[4].  Under it’s latest effort the committee has elected to 
advance the state of the art in predicting the fatigue life 
of structural components and systems through an 
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investigation entitled “Digital Prototypes for Durability”.  
The mission statement for this project states [1]: 

Systematically apply, develop, integrate, and 
validate all the tools and processes necessary to 
evaluate the structural durability of a vehicle by 
means of a digital simulation. 

The objectives were established as [1]: 

� Pool the resources of the committee to evaluate 
the current simulation processes as they relate 
to structural durability.  

� Foster development of new tools and processes.  
� Transfer the technology to users.  

To achieve these objectives it was decided to [1]:  

Select an inexpensive, simple, existing vehicle that 
can be easily modeled with respect to vehicle 
dynamics and component stress-strain behavior. 
Create a computer model of the vehicle and "drive" 
it over a digital proving ground route. Test the 
actual vehicle on the real course and measure the 
component loads, test the component durability, 
and then compare the digital predictions with the 
test results. Assess where models need to be 
improved and fix the deficient theory. After good 
correlation has been achieved, try changing some 
components, through light weight material 
substitutions or material processing changes, and 
then re-test and re-analyze for prove-out of the 
digital prototype procedure. 

The vehicle chosen is a Honda ATV (All Terrain 
Vehicle), Model TRX 300 4x4 (Figure 1).  This type of 
vehicle was chosen as it is relatively inexpensive to 
purchase, maintain, and transport, yet it’s frame and 
suspension are complex enough to realistically represent 
components that are under investigation in commercial 
projects at manufactures of vehicles, systems and 
components.  This motivates a broad participation from 
both OEMs, suppliers and academic parties that have the 
most to gain from the expected results.  The Honda 
Corporation is not actively involved in the project at the 
current time.   

The main venue for information exchange is via the 
website the committee has established at 
www.fatigue.org.  Results of the studies conducted to 
date are archived at this website.  These consists most 
notably of road load data from a data acquisition exercise 
with wheel force transducers under realistic operating  
conditions, FEA models, modal studies, flexible body 
dynamic simulations.  Finally, a number of physical tests 

 

Figure 1. Photo of Honda ATV  

of components, sub systems and a full vehicle test on a 
spindle coupled road simulator have been documented. 

BLACK BOX NEURAL NETWORK MODELING 
TECHNIQUE 

Methods currently in use for modeling the behavior 
of suspension components such as dampers and bushings 
do not account for the full complexity that these 
components exhibit. Most notably, the inherent non-
linearity and frequency dependent behavior can often not 
be described adequately through ‘first principles’ 
modeling, i.e. the formulation of the geometry, the 
material properties, and general differential equations 
relating the dynamic response of a component to any 
input. The ‘first principles’ approach, also commonly 
referred to as white box modeling, has shown great 
success for a number of applications of complex 
structures and systems.  However, due the lack of 
understanding of the influence of friction, difficulty in 
defining and measuring adequate material properties for 
elastomers and the accurate formulation of equations for 
complex fluid dynamics white box models of the 
aforementioned suspension components are inadequate to 
accurately predict their dynamic behavior.   

To improve on the predictive ability of the dynamic 
models, while keeping the computational effort at a 
minimum when using the model in more complex 
simulations of sub-systems or full vehicle models, the 
authors present a method that uses black box neural 
network models based on physical measurements 
performed on the part to be modeled.  This method has 
been described in detail in [5] and is from here on 
referred to as Empirical Dynamics Modeling (EDM) as it 
is based on measured, ‘empirical’ data and typically 
applied to the modeling of dynamically loaded 
components.  Empirical Dynamics and EDM are 
trademarks of MTS Systems Corporation. 
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A neural network is constructed of a number of 
units called ‘neurons’, where each neuron (Figure 2) 
takes a series of various inputs uk and multiplies them by 
constant weights wk, sums these along with a constant 
bias term, and then applies the result to a nonlinear 
‘activation’ function to yield an output value y. 
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Figure 2. Neuron, Block Diagram 

A neural network is constructed by connecting a 
number of neurons to the same inputs to form a ‘layer’ 
(Figure 3), and by using the outputs of one layer as inputs 
to another layer.  This structure is called a multilayer 
perceptron (Figure 4). 
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Figure 3. Neurons formed into a layer 
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Figure 4. Multilayer perceptron 

To represent a dynamic input-output relationship of 
a component not only current inputs and outputs but also 
a number of past inputs and outputs will be connected via 
a neural network.  This is referred to as a tapped delay 
structure and Figure 5 below depicts this using the 1−z  
transform notation. 

uk

yk

z-1 z-1z-1z-1 ∫∫ ∫∫z-1 z-1 z-1

 

Figure 5. Tapped Delay Structure for Neural Network 

The weights of the network are estimated by a 
‘training’ process, which is essentially a minimum square 
error estimation algorithm finding the set of weights that 
minimizes the error between measured and predicted 
data. One part of the measured data (training data) is used 
to estimate the weights of the network, Figure 6. 

measured
input

model generation

training data measured
output

 

Figure 6. Model generation 

While another part of the data (validation data) is 
used to calculate the error between predicted output and 
measured output.  The learning process is typically 
terminated, when no significant reduction of the error 
between measured and predicted output can be achieved, 
Figure 7.  
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Figure 7. Model validation 

  The optimal structure of the network depends on 
the dynamic characteristics such as inherent hysteresis, 
excitation bandwidth, and sampling frequency of the 
training data.   

Advantages of the black box modeling technique 
are the high accuracy in predicting output and the 
numerical efficiency in generating the predicted output.   
Because the black box models consist of a set of 
algebraic equations, the predicted output can be 
generated very fast. White box models, in contrast, 
typically require the solution of a set of differential 
equations, which often are solved in an iterative manner, 
requiring longer execution time. 

SHOCK ABSORBER EMPIRICAL DYNAMICS 
MODEL 

To demonstrate the efficacy of the Empirical 
Dynamics Modeling method a shock absorber of the 
ATV was studied.  The first step was to mount the 
specimen into a shock absorber characterization machine 
of type MTS 850. The specimen (see Figure 8) was then 
subjected to a “training-validation” random displacement 
input time history.   

 

Figure 8. Photo ATV shock absorber 

This history was a 55 seconds long white noise 
record with an auto-spectral density amplitude shaped by 

21 f and an excitation bandwidth of 0-60 Hz.  This type 
of signal was chosen as it “excites” a broad band of 
frequencies that contribute to fatigue damage when the 
component is operating under typical road load inputs.  

The corresponding achieved displacements and reaction 
forces were recorded (see Figures 9, 10, 11).  
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Figure 9. Measured training-validation data, 
displacement input time signal 
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Figure 10. Measured training-validation data, force 
output time signal 
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Figure 11. Measured training-validation data, 
displacement input vs. force output signal 
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A proprietary neural network structure [6] that was 
previously optimized for automotive shock absorbers was 
used to model the dynamic behavior of this specimen.  
Measured input and output history of the training-
validation signal were used to estimate the actual 
weighting factors of the network. 

To demonstrate the accuracy of the model an 
additional “prediction” random time history was 
generated (same excitation bandwidth and spectral shape 
as the training-validation data, length of 5 seconds, and 
an amplitude range that was 75% of that of the training 
data) and used as an input to the specimen on the test 
stand. The range of the prediction data is typically chosen 
less than the training data because the ED models cannot 
accurately predict wave forms with amplitudes larger 
than what was used to develop the model.  The actual 
measured response to this prediction input signal was 
then compared to: 

a) Predicted response by a linear transfer function 
estimate (frequency response function, FRF) 

b) Predicted response by the polynomial fit 

c) Predicted response by the ED model 

FATIGUE LIFE CALCULATION 

To demonstrate the sensitivity with respect to 
fatigue life when predicting loads, the authors present 
fatigue life calculations for a generic fictitious 
component.  This could be some part of the suspension or 
frame structure.  This component is considered to be 
loaded directly proportional to the measured and 
predicted force output history of the shock absorber. The 
local strain approach is employed in life calculations, and 
therefore predicts the initiation of easily detectable 
engineering size cracks.  The history is considered to be 
observed at a critical location such as the notch root of 
the component. 

Fatigue life was calculated for a steel of type SAE 
1045 (see Table 1 according to [7]) and a stress 
concentration factor equal to 3.  The actual measured 
response for the prediction history was scaled such that a 
fatigue life of 410  repetitions (blocks) to failure was 
achieved and then considered to be the nominal value for 
fatigue life.  All other fatigue life values are reported as a 
fraction or multiple of the value for the measured time 
history. 

Modulus of Elasticity, E (MPa) 202000 

Fatigue Strength coefficient, 
fσ ′  (MPa) 948 

Cyclic strength coefficient, K ′  (MPa) 1258 

Cyclic strain hardening exponent, n′    0.208 

Fatigue Strength exponent, b -0.092 

Fatigue ductility coefficient, fε ′   0.260 

Fatigue ductility exponent, c -0.445 

Table 1. Material Properties SAE 1045 Steel 

When the local strain approach (a fairly typical 
procedure, described in [8] and elsewhere) is employed 
in fatigue analysis, it requires both the stable cyclic 
stress-strain curve and the strain-life curve for the 
material. These are given by 

 ( ) n
aaa KE ′′+= 1 σσε  (1) 
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where aε  and aσ  are the strain and stress amplitudes, 
respectively, E is the modulus of elasticity,  0N is the life 
in cycles for the case of zero mean stress, and the 
parameters fε ′ , fσ ′ , K ′ , n′ , b and c are material 
constants. 

The Smith-Watson-Topper model for mean stresses 
is used, in particular, the strain amplitude is coupled with 
the maximum stress to incorporate mean stress effects.  
The equation describing this model is: 
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f

fcb
fff N

E
N 2 

2
 1

max 22
2

σ′
+ε′σ′=ε∆σ + (3) 

where the right hand side is based on the strain life curve 
generated from completely reversed controlled strain 
testing. 

For histories with varying amplitudes, the method 
of rainflow cycle counting has proven to be successful to 
identify full load reversals, or hysteresis loops, that are 
fatigue damage relevant.  This method is well 
documented (e.g. [9]) and not further described herein. 
According to the Palmgren-Miner rule ([10], [11]), the 
damage, iD , that corresponds to a particular rainflow 
cycle, is calculated from the cycle ratio by 
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where in  and iN  are the number of cycles counted and 
the number of cycles to failure for the given rainflow 
cycle, respectively.  The component life, BN , is then 
calculated from the induced damage due to all rainflow 
cycles as 
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where BN  is given in terms of the number of blocks 
(repetitions) of the load history. 

RESULTS 

After exciting the specimen with the training-
validation input signal and measuring the response this 
data was used to estimate: 

a) Least square fit by a linear transfer function 
(commonly referred to as a frequency response 
function, FRF), see Figure 12. 

b) Least square polynomial fit, a polynomial of order 
10 was found to be efficient in the sense that the 
residual error did not significantly decline for higher 
orders, see Figure 13 

c) Empirical Dynamics model, where the model was 
built using a standard Pentium PC with a speed of 
500 MHZ. After 10 minutes of calculation time an 
RMS error of 0.0522 kN was achieved and not 
further reduced during more training. 
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Figure 12. Frequency Response Function (FRF) fit of 
training-validation data 
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Figure 13. Polynomial fit of training-validation data 

After all models have been built, the prediction 
displacement input time history is applied to the 
specimen and the corresponding force response is 
measured, Figures 14, 15, 16. 
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Figure 14. Measured “prediction” displacement input 
time history 
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Figure 15. Measured “prediction” force output time 
history 
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Figure 16. Measured displacement input vs. measured 
force output history for prediction data set 

Subsequently, the prediction input history is applied 
to the FRF-model, polynomial-model and ED model and 
the predicted outputs are calculated.  The following plots 
show the predictive capabilities of the three models by 
comparing the measured and predicted output for the 
prediction data set. 

A: TIME DOMAIN COMPARISONS – The FRF 
fit traces maxima and minima well with respect to phase 
but underestimates the amplitudes due to the fact it is 
only a linear presentation of a component that exhibits 
non-linear behavior.  The polynomial fit can be seen as 
an approximation of the “running average” of the history, 
but it misses individual maxima and minima due to the 
fact that it does not capture the inherent hysteresis in the 
component behavior.  The ED model prediction traces 
the measured output history so closely that the lines 
practically overlap and, therefore, cannot easily be 
distinguished in Figure 17 below. 
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Figure 17. Portion of Measured and predicted time 
histories for FRF, Polynomial and ED model 

B: INPUT VS. OUTPUT COMPARISONS – The 
following figures should be compared to Figure 16 to 

demonstrate how well each fit captures the input-output 
relationship. 
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Figure 18. Measured displacement input vs. FRF fit 
predicted force output history 
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Figure 19. Measured displacement input vs. polynomial 
fit predicted force output history 
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Figure 20. Measured displacement input vs. ED model 
predicted force output history 

C: FATIGUE LIFE COMPARISONS – The 
following table summarizes the fatigue predictions.   
Fatigue life for the FRF fit is somewhat longer as the 
peak amplitudes were slightly underestimated which is 
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due to the fact that the FRF fit is linear in nature and does 
not represent the nonlinear increase in force amplitude 
for displacement extremes.  The polynomial fit predicts a 
significantly longer life as it averages between extreme 
values in the time domain (see Figure 19) and, therefore, 
predicts significantly fewer cycles than the number that 
was present in the measured data.  The ED model 
prediction is close to the one for the measured history.   

History Type 
(Force Output) 

Fatigue Life 

Measured 1 

FRF Fit 8.20 

Polynomial Fit 308.70 

Empirical Dynamics Model 0.98 

Table 2.  Fatigue life estimate for measured and predicted 
histories 

CONCLUSION 

The method of modeling the complex dynamic 
behavior of a shock absorber via an empirical dynamics 
black box models shows much improved predictive 
capability when compared to currently used methods 
such as linear transfer function models or nonlinear 
polynomial fitting functions.  Use of this method allows 
for the numerically efficient, high fidelity, description of 
the dynamic behavior of components such as shock 
absorbers that have defied accurate modeling in the past.  
This is particularly valuable for the analytical evaluation 
of systems in multi-body dynamics models where an 
accurate load prediction for each component is required 
to obtain an accurate system model for fatigue life 
predictions.  
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