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Modeling of non-stationary variance in vehicle loading
histories for fatigue analysis

Christoph Leser*, Surot Thangjitham† and Norman E. Dowling†

The concise description of one dimensional vehicle loading histories for
fatigue analysis using stochastic process theory is presented in this study.
The load history is considered to have stationary random and
nonstationary variance content.  The stationary variations are modeled by
an Autoregressive Moving Average (ARMA) model, while a Fourier series
is used to model the estimated variation of the variance.  Due to the use of
random phase angles in the Fourier series an ensemble of variance
variations can be obtained. Justification of the method is obtained
through comparison of power spectral densities, time histories and
resulting fatigue lives of original and simulated loadings.  Due to the
relatively small number of Fourier coefficients needed together with the
use of ARMA models, a concise description of complex loadings is
achieved.  The overall frequency content and sequential information of the
load history is statistically preserved.  An ensemble of load histories can
be constructed on-line with minimal computer storage capacity as used in
testing equipment.

Introduction
Vehicle loading histories are often lengthy and of random nature.  For successful
design against fatigue failure, simulation studies such as the Monte Carlo method and
laboratory testing are undertaken.  An accurate and concise description of the loading,
therefore, is desirable.  The methods of modeling irregular fatigue loading histories
can be divided into two groups, namely counting methods and methods based on
correlation theory, Bílý and Bukoveczky (1).

First, model free techniques evaluate the record via a count.  These methods
consider only the extreme values which reduces the required storage by discarding all
intermediate points.  They work well for fatigue loading histories in the absence of
creep effects, because only the extremes induce fatigue damage, while intermediate
points are irrelevant.  In this class, most commonly used are the Rainflow matrix
method, Endo et al. (2), and the To-From matrix method, Haibach et al. (3)

On the other hand, there are descriptions of random loadings based on correlation
theory.  For these techniques, the model becomes a substitute for the data, which
leads to a concise description with few parameters.  A method proposed by Yang (4)
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represents the data by its power spectral density, i.e., the frequency domain
description of the autocorrelation of the original data.  The Markov method as
described by Cacko et al. (5) falls in this category, as do a more general class of time
series called Autoregressive Moving Average (ARMA) models.

A previous publication by the author of this study, Leser (6), discusses in detail the
use of ARMA models for stationary fatigue loading histories.  Traditionally, ARMA
models have been used in the areas of earthquake-, wind-, and ocean-engineering to
model random load histories.

Random processes can be analyzed either in the time or frequency domain.
Techniques in the time domain are employed here because of their efficiency in
simulating loadings.  Furthermore, random processes can be classified into two
categories, stationary and nonstationary.  Nonstationary processes have certain
characteristics such as mean or variance that change over time.  The modeling of
nonstationarity is important because many real loadings are of nonstationary nature.

The history to be modeled in this study, taken from a ground vehicle traveling on a
rough road, is considered to consist of a slowly varying process, the nonstationary
variance variation, and a fast varying process, the stationary random variation. An
acceleration record of a ground vehicle travelling over a rough road (e.g. cobblestone)
at different speeds would generate a record of such type.  To account for such
variance variation in an accurate but concise manner, Fourier series are employed for
their versatility with respect to describing loadings and their ability to be extended to
a stochastic process.  ARMA models are used for their efficiency in describing
stationary random processes.  Finally, an ensemble of loadings can be obtained from
the observation of a single record, because both variance and random variation are
presented by stochastic processes.

Time Series Model
It is assumed that the time history under investigation is a superposition of a zero-

mean stationary random process and events which affect the variation of the variance.

To represent the random fatigue loading the following model then is employed:

ttt nsx ⋅= (1)

where tx  represents the underlying history, ts  is the scaling function accounting for

the variation in variance, and tn  a zero-mean stationary random process.  The

following sections will show how the components of Eq. 1 are modeled.  It is
understood that the parameter t refers to discrete points in time, as this study is
concerned with the modeling of sampled time series.

The scaling function, st , is defined as the function that renders the quotient tt sx

stationary with respect to variance.  This is equivalent to saying that st  is defined as
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an estimator of the standard deviation of tx .  In order to estimate the standard

deviation of tx  a procedure as shown by Nau et al. (7) is employed.

The time series, tx , sampled at discrete equally spaced intervals, a simple

estimate, 2~
tσ , for the true variance, 2

tσ , is obtained via a moving window such as
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To determine an appropriate size, n, of the window, inference methods from
classical statistics can be used.  Via a Chi Square test a confidence interval can be
constructed, Miller and Freund (8), such as
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where 2
tσ  is the value of the true variance, 2~

tσ  is the estimated variance, and 2
,1αχ −n

indicates the Chi Square distribution with ( )1−n  degrees of freedom at confidence
level α .  For an acceptable relative maximum error of 25% the following must hold

25.1~75.0 22 ≤≤ tt σσ .  These bounds, with a chosen value of 9.0=α , require a

minimum number of n = 96, therefore, for numerical simplicity a value of 100=n  is
chosen to estimate the true variance, 2

tσ .

The simplest weighting function is the rectangular one, i.e. ( )11 += nw j .  How-

ever, it is usually preferable to use a more gradually varying window, such that
neighboring points have a stronger influence on the estimate of the variance than
points that are further away from the current observation.  Reference (7) refers to the
use of a cosine bell shaped window, while in this study, for simplicity, a triangular
window is introduced such that
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It is shown in (7) that the estimate of the variance via Eq. 2 tends to be biased in a
systematic way.  Peak values in variance will be underestimated, while estimated
troughs will be larger than the corresponding true values.  In order to obtain a more
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accurate estimate a correction could be introduced to account for this known
deviation.  However, as a concise, and therefore only approximate, description of the
variance is desired, no further refinement is performed.

tσ~  then gives an estimation of the standard deviation of tx  and can, therefore, be

used to derive an estimate for the scaling function, ts .

The next step is to concisely represent the estimated standard deviation, ~σ t .  The
fact that ~σ t  is not evenly distributed makes it difficult to postulate models that would
describe it.  Therefore, a transformation due to Box and Cox (9) is commonly used to
enhance symmetry
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where BC
tσ~  indicates the Box Cox transform of tσ~ .  The parameter λ  is chosen such

that the transformed series has zero skewness, i.e. it becomes symmetrically
distributed about it’s mean, in order to facilitate modeling by a harmonic function.

In this study, the scaling function, ts , is a truncated Fourier series
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where as before t∆  is the length of the sample interval, ( )tN∆= πω 20  is the

fundamental frequency, M and N are the number of terms in the truncated Fourier
series and the total number of sample points of the history, respectively, and kc  and

kd  are the discrete Fourier coefficients.  For the limiting case where ( )12 −= NM ,
BC
t

BC
ts σ~= , while for ( )12 −< NM , BC

ts  is an approximation of BC
tσ~  leading to ts

as a suitable scaling function.  The value of M is found in this study such that BC
ts  and

BC
tσ~  have a prescribed correlation coefficient of 95.0=Mρ .  M is much smaller than

( )12/ −N , since the variation in variance has been calculated via an average and is
therefore of slowly varying nature.

Ensemble Variance
The Fourier series to describe the scaling function, st , will be augmented by random
phase angles, which in turn will be restricted according to the desired correlations
between deterministic and stochastic scaling functions.

Given the Box-Cox transformation of the deterministic scaling function of Eq. (6)
an ensemble of Box-Cox transformed scaling functions becomes
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with the random phase angles such that
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where ZN  indicates the number of terms with zero phase angles and U indicates the

uniform distribution on the interval ( )π2 ,0 . Depending on the value ZN  ensembles
can be generated that vary in their deviation from the initially estimated record of
Eq.(8).

ARMA Models
There are two components of an ARMA model: the autoregressive part and the
moving average part.  The autoregressive part represents the dependence of the output
variable (observed variable) on its own past. The moving average part represents the
dependence of the output process on the past values of the input process.

The full ARMA model is formed by a combination of the autoregressive and
moving average parts:

qtqtttptpttt aaaannnn −−−−−− −−−−=−−−− θθθφφφ �� 22112211 (7)

where the autoregressive parameters, iφ ; pi ... ,2 ,1= , and the moving average

parameters, iθ ; qi ... ,2 ,1= , are estimated from the observed data using standard

statistical procedures, Box and Jenkins (10). The input process, ta , is assumed to be

an independently and identically distributed random process with zero mean and
constant variance 2

aσ .  That is, ta  itself is considered to be non-autoregressive.

Fatigue Life Calculation
The fatigue life for original record and various reconstructions are reported as a
function of the RMS strain level, Dowling (11). It is therefore assumed that the
records under investigation represent local strains at a critical location of structure or
component.  A rainflow cycle count is performed and the Palmgren-Miner rule
applied to calculate the fatigue life per history.  By multiplying the records with a
given RMS level and calculating the fatigue life using the material constants of a mild
steel (SAE 1045) strain life curves are obtained.

Results
A typical history of nonstationary acceleration data is chosen in this study, Fig. 1.
This history, contains 10240 points, its power spectral density is shown in Fig. 2.
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According to the employed model of Eq. (1), the history is decomposed into its
two components, the scaling function, st , and the stationary random part, nt , where it
is assumed that the mean is constant and zero.  To model the scaling function, st , an
estimate of the standard deviation of the time series, tσ~ , is obtained according to

Eq. (2), and shown in Fig. 1.  In order to concisely represent tσ~  the Box-Cox

transformation is performed.  The optimal transformation parameter is found to be
275.0=λ , and the transformed variable, BC

tσ~ , is shown in Fig. 1.  A number of

Fourier series with an increasing number of terms are formed according to Eq. (8),
giving the tentative scaling functions.  The series, st

BC , with the fewest number of

terms that is correlated at 95% to BC
tσ~  has 50=M  terms and is also shown in Fig. 1.

The inverse Box-Cox transformation of BC
ts , ts , is the scaling function used to render

the original series stationary with respect to variance, see Fig. 1.  The stationary series
is the quotient of tx  and ts , Fig. 1.

This stationary series will be presented by an ARMA model.  Parameters for a
number of ARMA models are estimated and the correlation coefficients between
power spectra of these ARMA models and the spectrum of the stationary series are
calculated (not shown here).  Seeking models which have correlations of ( )qp ,ρ
greater or equal than 0 8. , 0 9. , and 0 95.  leads to the following choices of respective
minimum order models: ARMA(2,0), ARMA(2,1), and ARMA(6,0).

Reconstructions are formed by multiplying the ARMA model time series and the
Fourier series.  The ARMA(0,0) model yields the limiting case with the shortest
fatigue life, ARMA(1,0) the limiting case with the longest fatigue life and ARMA
(6,0) is the case with the fatigue life closest to the original loading, Fig. 3.  Both time
history (Fig. 1) and power spectral density (Fig. 2) of the complete reconstruction are
shown and agree well with the original record.

Summary
A vehicle load history model for fatigue analysis and testing is represented.
Nonstationarities with respect to variance and stationary random content are concisely
modeled.  The variance variation can be treated in either a deterministic or a
stochastic manner, where the stochastic case is adaptive in that desired correlations
between simulated and original record can be obtained.  The generation of an
ensemble is provided for by each component in the proposed model.  The frequency
content of the original loading is preserved in the simulation, allowing the application
to realistic dynamic and the extension to multiaxial loadings.  Moreover, the sequence
of events, which can be a factor in fatigue life, is preserved in a statistical sense.
Infinitely long records can be simulated with minimal computer storage in real time.
The description uses fewer parameters than any competing method of vehicle loading
description.
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Figure 1  Original history, modeling procedure, and reconstruction.
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Figure 2  Power spectral density of the original and reconstructed history.
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Figure 3  Strain-life curves for original and reconstructed histories.


