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Random Fatigue Load History Reconstruction

Abstract

A concise method for modeling nonstationary fatigue
loading histories is presented. The mininum number
of model parameters is achieved by fitting the vari-
ations in mean and variance by a truncated Fourier
serles. An autoregressive moving average (ARMA)
mode] is used to describe the stationary component.
Justification of the method is made by comparing fa-
tigue relevant parameters obtained when subjected to
the original and reconstructed histories. In spite of a
relatively small number of parameters required, the
model is shown to give good results that fall within
the bounds predicted by the orginal history.

Introduction

Engineering structures are commonly subjected to
complex fluctuating-load environments. For example,
ground vehicles are subjected to vibratory loads that
result from road surface irregularities, while pressure
vessels and pipes are usually under combined time-
varying mechanical and thermal loads. More often
than not, these loadings are of a random nature and
cannot be described by a simple mathematical ex-
pression {1,2]. Despite this fact, many engineering
designs have been based on a deterministic concept
that assumes complete information on the histories of
applied loads is known in advance. This is due mostly
to the lack of practical and uniform approaches for
analyzing and characterizing random load histories,
as well as to the inherent difficulties in thearetical
calculations and laboratory verifications of the design
objectives under such a random loading environment.

Due to the fact that general fatigue loading his-
tories are lengthy and randorm in nature, the develop-
ment of an accurate but nevertheless concise method
for describing such histories is deemed necessary. The
method is required not only to be able to preserve all
fatigue relevant events but also to contain a minimum
number of model parameters. The methods of model-
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ing random fatigue loading histories are divided into
two categories [3]-one that models only the extreme
events [4-6] and the other that models the complete
history [7-10].

Modeling the complete fatigue loading history re-
quires a continuous dynamic model. The model pa-
rameters are obtained by time series analysis of the
given history. Time series analysis can be performed
in both the frequency and time domains. In the
frequency domain, the statistical dependence in the
data is implicitly recognized by treating the data as
a combination of sine and cosine waves of various fre-
quencies and amplitudes. This can be accomplished
by performing spectral analysis to obtain the corre-
sponding power spectral density (PSD) function.

When time series analysis is performed in the
time domain, the statistical dependence in the data
is explicitly recognized in the model representation.
The dependence in the data is represented by the au-
tocorrelation function which is defined for a given lag-
time. Generally, the autocorrelation function goes to
zero i the lag-time is very large. That is, the obser-
vation at the current time is almost independent of
the observations from the distant past.

In this study, the time demain approach will be
utilized to model nonstationary random fatigue toad-
ing histories. It is assumed that a typical block of the
original history, D(1), is made availablein terms of N
observations measured at a constant time interval A.
This implies that both the mean and standard devia-
tion of the random load history are periodic functions
with period T = NA.

Time Series Representation of Fatigue
Loading Histories

To provide a general analytical model, z(t), for ran-
dom fatigue loading history, the following time series
representation is proposed:

(1) = m(t) + s(t) - n(t)



where m(t) and s(tf) represent the nonstationary
mean and time varying scaling function, respectively,
while n(t) is the stationary noise component with zero
mean and unit variance. It is noted that the product
s(t) - n(t) defines a random zero-mean process with
nonstationary standard deviation (variance).

The objective of random fatigue loading history
modeling is, therefore, to seek the appropriate time-
varying functions for m(t), s(¢), and n(t) such that
the resulting analytical time series z(t) will produce
fatigue relevant events similar to that produced by
the original history D(t). To simplify the analysis,
it will be assumed that the variations in mean, m(t),
and in scaling function, s(t), are of slowly-varying
processes as compared to the variation in the ran-
dom noise, n(t). This assurmption is very realistic,
especially for ground vehicle loading histories. Con-
sequently, both m(t) and s(t) will be considered as
smooth and continuous functions. Furthermore, the
slowly-varying scaling function s(¢) in this case can
also be viewed as the instantaceous standard devia-
tion of the process at time %.

Nonstationary Variation in Mean

Because the mean variation is considered as a slowly
varying process, only a finite number N, of terms
in a Fourier series is needed for accurately describe
m(t). This can be expressed as

N
m{t) = m + Z[ak coswyt + by sin wyt] {1)
k=1
where 7 is the long-term constant mean, a; and by
are the Ith Fourier cosine and sine coefficients, re-
spectively, and w; = 27k/N A is the kth Fourier fre-
quency. The number of Fourier harmonics, N, is
determined such that the resultinrg sequence, D'(t),
formed by the difference between the original history,
D(t), and the truncated Fourier series, m(t), becomes
stationary with respect to mean variation.

Nonstationary Variation in Variance

The remaining zero-mean process
D'(t) = D(t) — m(t) (2)

represents nonstationary variation in variance of the
loading. To model this variation, the scaling function,
5(t), is evalnated by fitting the time-varying standard
deviation function, ¢/(t), of the underlying process,

D’(t). The instantaneous standard deviation at time
t = kA, s}, can be calculated by considering the en-
semble average of the sample histories. In the case
when only one single loading history is available, s}
can be approximated by taking the temporal average
of the form

ki 2
S8 =) Wimng2) (ka+j-n/z)) (3)
i=0

where D} = D'(t = jA), w; is the weighting factor
for a triangular window defined by
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and n is the number of points (window width) used
in the averaging process.

Because standard deviation, s, is a non-negative
quantity, its distribution is generally skewed with re-
spect to the average value. However, in order to min-
imize the number of parameters needed in modeling
the scaling function s(t), a symmetrically distributed
sequence is highly desirable. To accomplish this, the
Box-Cox power transformation [11] is applied. The
transformation is defined by

Loy f ()Y for A#£0
('SBC)"_{ logsf, for A=0 (3)

where (s%z-), is the Box-Cox transform of s} and A
is the transformation parameter. The parameter A
is chosen to minimize the skewness measure of the
transformed sequence (s’5-), .

Similar to the case of nonstationary mean varia-
tion, the time-varying characteristics of the observed
sequence (szo), is modeled by a truncated Fourier

series sgg(t) as

A
spe(t) =SBe + D _ [ercoswit + desinuwgt]  (6)
k=1

where 3p¢ is the long-term average, ¢x and di are the
kth Fourier cosine and sine coeflicients, respectively.
The number of required Fourier harmonics, N,, is
determined in a similar manner as N,,.

The corresponding scaling function s(¢) can now
be readily obtained by taking the inverse Box-Cox
transformation of spc(t). It is recalled that this
slowly-varying scaling function is also the instanta-
neous standard deviation function of the process.



Stationary Random Variation

Uporn obtaining the mean, m(), and scaling, s(t),
functions, the remaining noise component

w(y = AL ()

becomes a stationary process with zero mean and unit
variance. This process can be concisely and accu-
rately described by an Autoregressive-Moving Aver-
age (ARMA) model, =(t).

There ate two components of an ARMA mode]:
(1) the autoregressive part and (2) the moving aver-
age part. The autoregressive part characterizes the
correlation relation between current observation of
the output variable, n; = n(t), and its own past obser-
vations, n;—; = n(t — jA), while the moving average
part represents the dependence of the output process
on the values of the input process, a;_; = a(t — jA).
For example, the following is a pth order autoregres-
sive and gth order moving average model, denoted as
ARMA(p,q) [12]:

Ny = Py = Palg—z — . o — PpNe—p = (8)
a; — 816&-1 — 32&:-2 i aqat—q

where ¢;:0 = 1,2,...,p, and 8;;¢ = 1,2,...,q, are
the autoregressive and moving average parameters,
respectively. In the above model, the input a(f) is
assumed to be an independently and identically dis-
tributed random process, i.e., a(t) itself is considered
1o be non-autoregressive.

The autoregressive moving average processes can
also be conveniently expressed in the frequency do-
main. In this case, the one-sided power spectral den-
sity W(f) corresponding to the ARMA(p,q) model is
given by [12]

0 f<

(9)
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where o2 is the variance of a{t), f is the linear fre-
quency, and 12 = -1,

(%] ]

Nonparametric Statistics

In order to determine whether a sequence of obser-
vations is of random nature, statistical tests must be
performed. If informatior about the distribution of
the underlying sequence is not available, a2 nonpara-
metric statistical tests is preferred. In nonparametric

inference, the tests are based only on the relative oc-
currence of an event formed by the sequence. As a re-
sult, information and assumptions regarding the sta-
tistical distribution of the sequence are not required.
In this paper, a method of nonparametric statistical
analysis will be employed in determining the most ap-
propriate values for ¥, and N, required by Eqs. (1)
and (6). Specifically, three different run (sequence of
a defined event) tests based on the total number of
runs, the length of the longest run, and the number
of runs up and down were chosen {13]. Depending
on the required level of confidence «, different values
for N,, and N, are obtained. The detailed discussion
concerning the tests will not be discussed here and is
referred to [10].

Fatigue Life Analysis

When the local strain approach is employed in fa-
tigue life analysis, it requires both the stable (half-
life) cyclic stress-strain curve and the strain-life curve
for the material. These are given by [14]

¢ =2 (Eg)”"' (10)

a.l
& = o 2No) + ¢ (2N0)° (11)

where €; and o, are the strain and stress amplitudes,
respectively, E is the elastic modulus, Ny is the life in
cycles for the case of zero-mean stress, and the param-
eters €;, 0y, H', n’, b, and ¢ are material constants
obtained from curve fitting the fatigue and stress-
strain data.

The effect of mean stress  on life may be esti-
mated using the following relation [15]

S\
N=No (1 - E;T) (12)

where N is the life in cycles corresponding to the case
of nonzero-mean stress, 7.

According to the Palimgren-Miner rule, the dam-
age D;; that correspond to a particular rainflow cycle
Ci;, which forms a closed local stress-strain hystere-
sis loop with means, 7; and %;, and ranges, Ao; and
Ag;, is calculated from the cycle ratio given by [14}

Dij =47 (18)

where n;; and Nyij; 4,7 =1,2,..., M, are the number
of cycles counted and the number of cycles to failure



for the given rainflow cycle C;;, respectively. The
constant M is the number of class intervals used in
the rairflow cycle counting.

The component life, N, is then calculated from
the induced damage due to ", Zf,-‘il n;; rainflow
cyeles as

M M -1
Ng = z Z.D,‘j (14)
1=1 g=:
where N g is given in terms of the number of blocks

(repetitions) of the load history.

Results and Discussion

In this study, a typical block of nonstationary ser-
vice loading history of a ground vehicle is chosen. It
represents the history of strain gauge readings at a
critical location while the vehicle is traveling on a
rough road. The history contains ¥ = 10, 240 data
points and is shown in Fig. la. It is noted that the
nonstationary variation in mean is generally due to
maneuvers, while the nonstationary variation in vari-
ance is induced by change in vehicle speed as well as
road profile. Without loss of generality, the load his-
tory is normalized such that the overall mean is zero
and the dimensionless standard deviation is equal to
unity. The normalized minimum and maximum are
found to be —3.921 and 2.754, respectively.

According to the proposed model (Eg. 1), the
loading history is decomposed into three compo-
nents: the nonstationary mean, m(t), the nonsta-
tionary scaling function, s(t), and the stationary ran-
dom noise, n(t). Both m(t} and sgg(t) are modeled
using the truncated Fourier series. The numbers of
terms N, and N, needed for m(¢) and spc(t) are
determined via nonparametric statistical run tests.
To describe the stationary random process n(t), the
Autoregressive Moving Average (ARMA) models are
considered.

In order to obtain the Fourier coefficients for the
mean function, m(t), a discrete Fourier transform is
performed on the original history, D(t). This results
in a total of (¥/2 —1) harmonics. To model only the
slowly-varying components, a finite number N, =
41of low frequency components is considered. The
plot of m(t) is shown in Fig. 1b.

The observed time-varying standard deviation
function s'(t}) can be obtained next by considering
the mean removed sequence D'(¢), Fig. 1c. The in-
stantaneous standard deviation s at time t = kA is
estimated according to Eq. (3) and the result is shown

in Fig. 1d. The optimal value for A in the Box-Cox
transformation is found to be (0.403. The sequence
of the transformed standard deviation (s%.), is plot-
ted in Fig. le. It is obvious that the latter sequence
is more evenly distributed about the average value
than the former one. Next, the Fourier series rep-
resentation, spc(t), of the Box-Cox transformed se-
quence is modeled. For this case, the number of terms
N, = 70 in the Fourier series is found to be adequate.
The plot of the corresponding time series is shown in
Fig. 2a. The required scaling function, s(t), is readily
obtained by taking the inverse Box-Cox transforma-
tion of spc(t) and is shown in Fig. 2b.

The remaining stationary zero-mean noise com-
penent n'(t), Eq. (7), is to be represented by n(t), an
ARMA model. By comparing the correlation coeffi-
cients, p, between the power spectral densities of the
sequence n'(t) and of various ARMA(p, g) models, it
is concluded that ARMA(8,0) with p = 0.96 is the
optimal model. The two processes n'(t) and =n(t) are
plotted in Figs. 2c and 2d, respectively. Figure 2e
shows the load history, z(£) = m(¢) + s(¢) - »(t).

Plots showing the original loading history and its
typical reconstructions are given in Fig. 3. Compar-
ison of the power spectral densities for the original
and reconstructed histories is shown in Fig. 4.

For the purpose of fatigue life analysis, the lo-
cal strain approach is employed. Fatigue life calcula-
tions subjected to both the original and reconstructed
strain loading histories are presented for unnotched
SAE 1045 steel [16] under uniaxial loading. In or-
der to eliminate any bias introduced by 2 particu-
lar reconstruction, the average fatigue life obtained
from a total of 64 independent recomstructed load-
ing histories is considered. Figure 5 shows the strain
fife curves [17] corresponding to reconstructed load-
ing histories with various ARMA models together
with the upper and lower bounds [18] obtained from
the original loading history. A fairly good agreement
is seen when the random noise is represented by an
ARMA(8,0) model. This is noted by the correspond-
ing life curve falls within the upper and lower bounds
predicted by the original history. The shortest life
is found when employing ARMA(0,0) model while,
on the other hand, the longest life is predicted when
using ARMA(1,0) model.
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Fig. 1 Time series plots for a) original history, D(t), b) mean variation, m(t), ¢) mean-
removed process, D'(t), d) standard deviation (scaling) function for D'(t), s'(¢), and
e) Box-Cox transformation of s'(t), s’po(2).
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Fig. 2 Time series plots for a) Fourier representation of s'g~(t), sgc(2), b) analytical scaling
function, s(t), ¢) stationary noise component, n'(¢), d) ARMA(8,0) model, n(t), and
e) reconstruction of the loading history, z(t).



QOriginal

Reconstruction 1

Reconstruction 2

Reconstruction 3

O
3
y 9

cti

o

Reconst

|
|

Reconstruction 5
) i i I 1 | ! ' |

0 2048 4096 , 6144 8192 10240

Fig. 3 Time series plots for original, D{t), and various reconstructed, z(t), loading histories.
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Fig. 5 Fatigue hfe curves (number of blocks to failure, Np, vs. strain root-mean-square,
erys) for reconstructed loading histories with various ARMA models, together with
the lower and upper bounds predicted by the original history.



