I Software Evolution to Support Advanced Mechanical Testing methods:

NI_.T.S® A Thermo-Mechanical Fatigue (TMF) Testing Example

FAJFROWSKI Michel, LESER Christoph

In an attempt to create a standard for TMF testing, a code of practice has been created by a consortium of international partners. The intent of the
TMF code of practice is to ensure the consistent characterization of materials subjected to thermal and mechanical loads simultaneously. One of
the difficulties inherent in this type of test is that the total strain is the sum of both a thermal strain and a mechanical strain. This complexity can be
overcome with new generation controllers, software platforms and advanced techniques that allow the generation of temperature profiles in parallel
with load and strain control.

This poster demonstrates how advanced MTS algorithms and techniques can be applied and modified to meet TMF code of practice requirements.

The TMF Code of Practice The MTS Command Panel of the TMF Template

TMF-Test -]

L. Catibration procedure Each task from the CO de Of practlce MTS TestSuite Custom Message Window
Frequency of calibration: a) once a year, b) if parts are replaced or damaged, c) if shunt error >+1% (F, €) .1-1 , . . Tdnus
. . 1ermal Mechanical Fatigue Strain Test
is generated in the template by a e
Alignment Load Cell Extensometer Temperature- Test Opthll Status
according tq: according :co: according to: measuljemen.t butto n f rom th e C Omman d an el Test Setup Status Test Setup Status
Code of Practice ISO 7500-1 ISO 9513 according to: " = .
e.g. Kandil (1998) class 1 class 1 ASTM E220 Strain Test Parameter Status Template Default
Evending < £3% Faror < £1% Eemor < £1% Strain Test Termination Status Template Default
| Data Storage Parameter Status Template Default
2. TMF pre-tests: Thermal Stability Status Not Done
2.a. For each test series calibration procedure completed? Extensometer Verification Status Not Done
Modulus Check Status Not Done
Optimization Status Not Done
Thermal stabil.ity Relation of temperature in the Test set up accor.ding Thermal Strain Status Not Done
of the test machine. middle and at the shoulder of the to Section 2 specimen,
specimen induction coil, temperature ZeroStressStatus Not Done
How many thermal cycles are (only for spot welded TC at shoulder) measurement, gradients
eeeeeee ry? Test Status Setup
| Report Results Status Template Default
2.b. For each test §> pre-tests for test series completed? Strain C ycles 0 count
| |
E-Modulus Optimisation Thermal strain Zero-stress-test
static or pseudo- temperature path according to 3.3 according to 3.4
dynamic according to 3.2 hysteresis < 5% AG< £5% A
according to 3.1 Torror < £5K or Ag thiest ~Agthret o o A0TME . [Test Setup] | Strain Test Parameters [Strain Termination Parameters] | Data Storage Parameters
1% A7 Each button is defined by an open
7 | . | Monitor Thermal Stability] | Thermal YV alidation Report]
— ? program block, modifiable by the user
3. TMF test: all pre-tests for single specimen completed? [Extensometer Yerification] | Measure Modulus] | Optimize Cooling Cycle [Thermal Strain Measurement] | Zero Stress Test
for each specimen : o h e 1
(strain test button in this example)
| Strain Test] | Reattach The Extensometer] | Ramp To Ambient Temperature
Data acquisition Test start Test stop and Reporting
according to 5.1 restart
(at least) according to 4.1 according to 4.2 according to 5.3 [Enter Report Results] [Generate Report] [Done]
Peak-Valley:
F, e°.T
time-based:
t, F, StOt, Vi
= Strain Test
T
v v v v ' v v v _ .
Command Branch Detect External Stop Stable Cycle Too Much Delta Level Data Too Much Peak Valley Path Strain Peak Monitor Path ~ Strain Valley Monitor Path 1emperature Maximum Temperature Minimum
Monitor Path Monitor Path
~ N B 4) (" :) (" :) a N N | N | R
=N = While Loop = While Loop L L L =
-u\| o ' g i IA! /S /S /S
. . Detect when Stoppin Stable Cycle Detection While Loop Activity While Loop Activity Strain Peak Control Failure Strain Valley Control Failure Maximum Temperature Failure Minimum Temperature Failure
The strain block is \ J N T T / 7 7 - i S)\ f)\ f /
. ~ ~ 4 N e “ I I e “ s N e A s N
composed of different zlx X j i z()) i Z") zlx zlx X jl X j
a Ct l V I t l e S tO C O m m a nd 'h '“ — “S— . 'h Tem eratl:re Peak Control Tem eratu:e Valley Control
a | g O rlth m S ba S ed b J \Assign Detect Variabkﬂs) \Calculate Termination Criteriaj \Wait for Event \Wait for Event éssign Peak Failure Variable_s) \,hﬁssign Valley Control Variablesj N P Variable o L P Variablesy o
¢ 8 ¢ . ¢ ™
. 3 R e ~\
on force, strain, Parallel Activity T T) T T)
=3
temperature and to - c ' 1 , —ﬂ
S | mu |ta Neous | contro | Hamp Mechanical Strain,]] | Increment Counter | | Increment Counter)
y p v - Crack Init Branch Specimen Failure Branch l l
. s : N _ , _ ,
any failure or change j, = i i
’ I/T \!
4 N " o
of these parameters. _ g) X X
Strain Test ;".\ , :
. 7 J |f L Specimen Failure g ¥ y
4 B ¢ . .
X ﬂ \ Crack Init) 4 2 N\ _ Excessive Level Data) Excessive Peak Valley Data
Assign Cycles Completed : . .
(Assign Cycles Completed, _Assign Failure Variables)
¥ {
_ ,
h 4 A 4 h 4 A 4 h 4 h 4 h 4 A 4

Algorithm example: thermal strain

The code of practice specifies that the thermal strain, obtained from the load free thermal strain measurement, must be compensated. This
compensation can be temperature or time based. To achieve this, MTS has developed a specific technique to calculate the thermal strain curve.
This technique uses a “polynomial array”that allows one to specify the power of the polynomial. The strain temperature curve (denominated
“calculatedthermalstraincurve”) is then fitted with this polynomial, which uses the “coeflist” argument.

CalculatedThermalStrainCurve: PolynomialArray(TemperatureArrayThermalStrain, CoefList)
CoefList: PolynomialFit(ThermalStrainTotal, ThermalTemperatureTotal, 2)

Open source programming language

MTS has implemented an open source programming language, #Function definition

Python, which makes it possible to adjust and create any kind of def PolynomialArray(DataArray, coef)
calculation through function generation. In the following example, length = len(DataArray)

the polynomial array calculation is accessible and can be modified: retValue = [0.0]*length

for 1 in range (length):
retValue[i] = Polynomial(DataArrayli], Coeflist)
return retValue

